
AAS 23-025

BENCHMARKING STATE ESTIMATION ALGORITHMS FOR
OUTPUT FEEDBACK MODEL PREDICTIVE CONTROL OF

SPACECRAFT AUTONOMOUS RENDEZVOUS AND DOCKING*

An Dang,† Sean A. Phillips,‡ and David A. Copp†

We present multiple state estimation algorithms that can be used in spacecraft au-
tonomous rendezvous, proximity operations, and docking (ARPOD) missions and
compare the performance of the resulting closed-loop systems when these estima-
tion algorithms are combined with model predictive control (MPC). We consider a
passive target object and a chaser spacecraft. The system dynamics are described us-
ing standard nonlinear equations for spacecraft relative motion on orbit. The sensing
capability of the chaser spacecraft depends on its proximity to the target: at farther
distances, only relative angle measurements are available; at closer distances, both
relative angle and range measurements are available. In all cases, the measurements
are nonlinear functions of the system’s states, in this case relative positive and veloc-
ity. Moreover, the measurements are noisy, and the system dynamics have process
disturbances. Therefore, state estimation algorithms are required to construct state
estimates from these erroneous, noisy output feedback measurements. Specifically,
we present and compare Extended Kalman Filter (EKF), Particle Filter (PF), and
Moving Horizon Estimation (MHE) algorithms and analyze resulting fuel consump-
tion, mission time, state estimation error, and computation time when solving an
ARPOD benchmark problem with MPC paired with each of these state estimation
algorithms. The tradeoffs between computation time and performance are clear: the
EKF approach requires the least computation time but results in the worst overall
performance, the MHE approach requires the most computation time but produces
the best results, and the PF approach performs in the middle for both computation
time and performance. The particular impact of distance to the target and process
noise/disturbances on the performance are presented for each state estimation algo-
rithm.

INTRODUCTION

Recently, it has become significantly easier to access the space domain. This is due, in large part,
to more launch options both domestically and abroad. This ease of access also opens the poten-
tial for emerging space applications, from commercial constellation-level applications like global
internet service providers and imaging for ground navigation applications to proximity operations
like in-space servicing and manufacturing, or identification and removal of orbital debris. These
complex operations will require a large amount of operational burden and may require increas-
ing spacecraft autonomy to alleviate this burden. Recently many researchers in government labs
have released space-trusted autonomy readiness levels to apply to advanced satellite operations.1

These applications also require safety and robustness to model errors, disturbances, and sensor

*APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED. PUBLIC AFFAIRS APPROVAL
#AFRL-2023-1823.

†University of California, Irvine. Irvine, CA 92697, USA.
‡Space Vehicles Directorate, Air Force Research Laboratory, Kirtland AFB, NM 87117, USA. The views expressed

are those of the authors and do not reflect the official guidance or position of the United States Government, the Depart-
ment of Defense or of the United States Air Force.

1



noise.2, 3 These challenges emphasize the need for advanced estimation and control techniques for
autonomous spacecraft.

In this work, we consider the problem of a spacecraft performing an Autonomous Rendezvous,
Proximity Operations, and Docking (ARPOD) mission. We follow the spacecraft benchmark prob-
lem formulation proposed in (Ref. 4) and specifically consider a chaser spacecraft tasked with ren-
dezvous and docking with a passive (non-actuated) target spacecraft on orbit. The different phases
of an ARPOD mission are shown in Figure 1. During the ARPOD mission, the sensing capability
of the chaser spacecraft depends on its proximity to the target. At further distances (Phase 1), only
relative angle (or bearing) measurements are available. At closer distances (Phases 2 and 3), both
relative angle and range measurements are available. In all cases, these measurement equations
are nonlinear functions of the system’s states, which include relative positive and velocity. More-
over, the measurements may be noisy, and the system may experience process noise/disturbances.
Therefore, state estimation algorithms are required to construct state estimates from these erroneous,
noisy output feedback measurements. Then, using these state estimates, a feedback controller can
be designed to calculate the actuation required to complete the mission.

Figure 1 Depiction of ARPOD mission phases. Phase 1 of the mission is the initial
phase of the rendezvous maneuver when only relative angle measurements are avail-
able. Phase 2 involves the rendezvous maneuver when both relative angle and range
measurements are available within 1 km of the target. Phase 3 is the docking phase
and starts within 100 m of the target.

In this paper, we present several state estimation algorithms that enable effective control of space-
craft performing the ARPOD mission set and provide an in-depth comparison of the resulting esti-
mation performance. Furthermore, we couple these estimation techniques with a control algorithm,
namely, a model predictive control (MPC) algorithm, and evaluate the closed-loop performance.
MPC is a finite-horizon online optimization approach for feedback control that is popular in numer-
ous applications because it can explicitly accommodate constraints on the system dynamics, states,

2



and inputs.5 MPC has been applied in several spacecraft applications,6 and particularly in problems
involving spacecraft relative motion.7–13 The Extended Kalman Filter (EKF) (see, e.g., (Ref. 14))
is the most popular state estimator to be paired with MPC for spacecraft relative motion (see, e.g.,
(Ref. 4, 9, 15)), however, it is possible to use other state estimators, such as a Particle Filter (PF)16

or Moving Horizon Estimation (MHE).17 There are advantages and disadvantages to each of these
estimators, and an evaluation of EKF versus MHE is given by (Ref. 18).

We design multiple state estimation algorithms for this spacecraft rendezvous and docking prob-
lem and compare their performance when used with a benchmark MPC framework for spacecraft
relative motion, described in (Ref. 8). We perform a rigorous numerical analysis wherein we simu-
late a chaser spacecraft performing autonomous rendezvous and docking with each of the state esti-
mators (EKF, PF, and MHE) using output feedback nonlinear measurements and considering mea-
surement noise and process noise/disturbances. We perform numerous simulations of the closed-
loop system comprising each state estimator combined with the MPC algorithm for the following
three cases:

Case 1) Chaser spacecraft starts in Phase 1. There is additive noise in the sensor measurements.

Case 2) Chaser starts in Phase 1. There are additive process disturbances and measurement noise.

Case 3) Chaser starts in Phase 2. There are additive process disturbances and measurement noise.

For each case, we compare the resulting performance of using each state estimator in terms of
estimation error, computation time, mission time, and fuel consumption.

PROBLEM FORMULATION

We consider a passive (non-actuated) target spacecraft that is orbiting in a circular Keplerian
orbit. Then the equations for relative motion between an active chaser spacecraft and the passive
target are19

ẍ− 2nẏ − n2(R+ x) + µ
R+ x

((R+ x)2 + y2 + z2)
3
2

= ux

ÿ + 2nẋ− n2y + µ
y

((R+ x)2 + y2 + z2)
3
2

= uy

z̈ + µ
z

((R+ x)2 + y2 + z2)
3
2

= uz.

(1)

These nonlinear translational spacecraft dynamics describe the chaser spacecraft’s position and ve-
locity in a local-vertical/local-horizontal (LVLH) frame with reference fixed on the center of gravity
of the target spacecraft. The states x :=

[
x y z ẋ ẏ ż

]⊤ ∈ R6 include the spacecraft’s po-
sition and velocity. The state x denotes the position in the radial direction (from earth), also known
as the cross-track direction, y denotes the position in the in-track direction, and z denotes the posi-
tion in the cross-track direction that completes the right-hand coordinate system with x and y. We
consider six continuously variable thrusters that provide thrust in the positive and negative direction
of each dimension and define the thrust actuation control inputs as u :=

[
ux uy uz

]⊤ ∈ R3.
R denotes the orbit radius of the target spacecraft, n =

√
µ/R3 is the angular speed, or “mean

motion,” of the target through its orbit, and µ is the Earth’s gravitational constant.

3



When the chaser is close to the target, the nonlinear spacecraft relative motion dynamics (1)
can be linearized around the target’s position, which gives the following Hill-Clohessy-Wiltshire
(HCW) equations20, 21

ẍ− 3n2x− 2nẏ = ux, ÿ + 2nẋ = uy, z̈ + n2z = uz.

These continuous linear time-invariant dynamics can be written in a state-space form as ẋ = Acx+
Bcu. We can convert these continuous-time dynamics to the following discrete-time linear time-
invariant dynamics

xt+1 = Axt +But + dt, (2)

where xt and ut denote the states and control inputs at time step t, respectively, and
dt :=

[
dx dy dz dẋ dẏ dż

]⊤ ∈ R6 is an unknown vector that accounts for possible additive
disturbances at time step t. These disturbances may capture actuator uncertainty due to errors or
misalignment or may capture unmodeled dynamics or process noise. We assume these disturbances
are normally distributed random variables such that dt ∼ N (d̄, σd) for all times t.

The conversion to discrete time is done using the state transition matrix such that A = exphAc ,
where h is the sampling time step. The discrete-time matrix B depends on the type of control
considered. If control inputs are constant for each sample time interval h, as they are in this work,
then B = AcBc. Therefore, A and B are given as

A =


4− 3 cos(nh) 0 0 (1/n) sin(nh) (2/n)(1− cos(nh)) 0

6(sin(nh)− nh) 1 0 (2/n)(cos(nh)− 1) (1/n)(4 sin(nh)− 3nh) 0
0 0 cos(nh) 0 0 (1/n) sin(nh)

3n sin(nh) 0 0 cos(nh) 2 sin(nh) 0
6n(cos(nh)− 1) 0 0 −2 sin(nh) 4 cos(nh)− 3 0

0 0 −n sin(nh) 0 0 cos(nh)

 ,

B =



(1/n2)(1− cos(nh) (1/n2)(2nh− 2 sin(nh)) 0

(1/n2)(2(sin(nh)− nh) −3h2/2 + (4/n2)(1− cos(nh)) 0

0 0 (1/n2)(1− cos(nh))
sin(nh)/n (2/n)(1− cos(nh)) 0

(2/n)(cos(nh)− 1) −3h+ (4/n) sin(nh) 0
0 0 sin(nh)/n

 .

Measurement Model

With each of the state estimation algorithms we assume only output feedback is available given
by the following nonlinear measurement models (see, e.g., Ref. 4). The measurement model when
the chaser has only relative angular measurements to the target (i.e., bearings-only) is defined as

yt = g(xt) =

[
αt

et

]
+ vt =

[
arctan(yt/xt)
arcsin(zt/ρt)

]
+ vt, (3)

where ρt ∈ R denotes the magnitude of the relative displacement vector [xt yt zt]
⊤ at time t, i.e.,

ρt := ∥ [xt yt zt]
⊤ ∥ =

√
x2t + y2t + z2t , the vector vt ∈ R2 denotes measurement noise at time

t, αt ∈
[
−π π

]
denotes the horizontal (or azimuth) angle from the chaser to the target, and et ∈[

−π π
]

denotes the elevation angle from the chaser to the target. We assume the measurement
noise are normally distributed random variables such that vt ∼ N (v̄, σv) for all times t. This is the
measurement model for Phase 1 of the ARPOD mission, which means the spacecraft’s state is only
partially observable during this initial phase.

4



MPC(x̂t) System(ut) Sensor(xt)
params, x0 ut xt

S(ut,yt)
yt

x̂t

Figure 2 Block diagram of the closed-loop system.

If a range measurement is also available (i.e., in Phase 2 of the ARPOD mission), then the mea-
surement model is defined as

yt = g(xt) =

αt

et
ρt

+ vt. (4)

In (4), vt ∈ R3 denotes measurement noise on both angle and range measurements at time t.

Therefore, for the rendezvous and docking mission, the problem is to find control inputs ut that
drive the state of the chaser spacecraft xt to zero (i.e., the origin of the LVLH reference frame
centered at the target’s position) given noisy nonlinear angle and range measurements, as in (3) and
(4), and in the presence of disturbances dt. In the examples to follow, we use the linear model (2)
to design the control and estimation algorithms, but we simulate the nonlinear dynamics (1).

STATE ESTIMATION ALGORITHMS

We consider the following three state estimation algorithms: Extended Kalman Filter (EKF),
Particle Filter (PF), and Moving Horizon Estimation (MHE). Each of these is combined with a
benchmark MPC algorithm resulting in feedback controlled motion of the chaser spacecraft for the
ARPOD mission. A block diagram of the closed-loop system is shown in Figure 2, where S(ut,yt)
denotes the state estimation algorithm, and x̂t denotes the state estimate at time t. The EKF has
been used extensively in the spacecraft relative motion literature. The PF (Bayesian filtering) has
the advantage of working with nonlinear systems and approximating non-Gaussian distributions.
MHE has similar advantages to the PF and also explicitly handles constraints.

For a fair comparison of these estimation algorithms, each use the dynamics (2) and have the same
information about noise and disturbances. For example, the process disturbance covariances are
assumed to be known and are used in the formulation of each of these algorithms. These algorithms
are each paired with the same MPC algorithm and are given the same initial conditions and mission
parameter values. The differences in state estimation performance result in different trajectories
for the chaser spacecraft. To compare these differences, we perform numerous simulations of each
closed-loop system with varying initial conditions and analyze resulting performance in terms of
state estimation error, computation time, spacecraft fuel consumption, and mission time.

Next we describe the design of each of these three estimation algorithms for use in the ARPOD
mission.

5



Extended Kalman Filter (EKF)

The Kalman Filter is a well-known state estimation algorithm that utilizes the fusing of system
dynamics and sensor measurements to estimate a system’s state. It is the optimal, unconstrained,
linear state estimator, so it requires that the system dynamics are linear with possible additive Gaus-
sian disturbances dt as in the dynamics (2), and that the output equation is linear with possible
additive Gaussian noise vt in the sensor measurements. Because the output equations (3) and (4)
are nonlinear, the Kalman filter cannot be used. Instead, we use the EKF, which first linearizes the
nonlinear system and then applies the Kalman filter to obtain the state estimates. The EKF can be
formulated as described in, e.g., (Ref. 14).

Particle Filter (PF)

The Kalman Filter represents state estimates as Gaussian random variables where the mean is the
model and the covariance is its Gaussian noise. In contrast, the PF can accommodate arbitrary dis-
tributions by using a form of importance sampling with a large quantity of weighted particles. Using
the ideas of importance sampling, with enough particles, the PF can take a baseline distribution that
we give it and use that baseline distribution to closely estimate the true distribution.

One of the main benefits of the PF is its ability to handle nonlinear dynamics and non-Gaussian
noise. With an arbitrarily large number of particles, the PF is able theoretically to estimate the
state perfectly, which gives it the ability to achieve high accuracy. A drawback of the PF is its
high computation requirements, which increases with the number of particles. The computation
required for acceptable accuracy from a PF may be achievable with modern computing capabilities.
Moreover, its computations can be parallelized to speed up processing and make it applicable for
embedded systems that include GPU technology.

For this spacecraft application, we follow the PF formulation described in (Ref. 16).

Moving Horizon Estimation (MHE)

MHE involves the solution of a finite horizon online optimization problem in which an objective
function is minimized given a sequence of past measurements and the system dynamics. The opti-
mization problem is solved at each time step when a new measurement is available, and the oldest
measurement in the finite window of past measurements is forgotten. Like the PF, MHE has the
advantage that it can accommodate nonlinear systems and arbitrary distributions, and in addition,
it can accommodate constraints. The main drawback is that it can be computationally expensive to
solve an optimization problem at each time step.

For the spacecraft rendezvous and docking problem, we can formulate the MHE optimization
problem

min
x̂t−L:t

t−1∑
k=t−L

(x̂k+1 − (Ax̂k +Buk))
⊤QMHE(x̂k+1 − (Ax̂k +Buk))

+ (yk − g(x̂k))
⊤R(yk − g(x̂k)) (5)

which is unconstrained due to the incorporation of the linear dynamics (2) and the nonlinear mea-
surement function (3) or (4) (depending on the phase of the mission) into the objective. The diago-
nal weighting matrices QMHE and R can be designed relative to the noise covariances, and L is the

6



length of the finite backward horizon. This problem (5) is solved online at each sampling time step
t in a receding horizon fashion, and the solution is the sequence of past state estimates x̂t−L:t that
minimizes the objective.

MPC FOR SPACECRAFT RENDEZVOUS AND DOCKING

We pair each of the state estimation algorithms described in the State Estimation Algorithms
Section with a benchmark MPC algorithm, which is formulated as in (Ref. 8) and summarized as
follows. The resulting closed-loop system is shown in Figure 2. MPC involves the solution of a finite
horizon online optimization problem that finds a sequence of future control actions that minimize
an objective function, given an estimate of the state at the current time. The objective of the MPC
problem for rendezvous and docking is to control all of the chaser spacecraft’s states (i.e., position
and velocity) to zero in the LVLH reference frame that is centered at the target’s position while
minimizing fuel consumption. Therefore, we can define the objective function to be minimized as
the following quadratic function that penalizes nonzero states (to drive the chaser to the target) and
nonzero control inputs (to penalize fuel consumption)

Jt(x̂t, ût:t+T−1) =

t+T∑
k=t

x̂⊤
k Qx̂k + û⊤

k Ruûk, (6)

where T is the number of time steps in the finite forward horizon, and Q and Ru are diagonal weight-
ing matrices. The optimization variables are the sequence of future control inputs ût:t+T−1 :=
{ût, ût+1, . . . , ût+T−1}. Our goal, given a current estimate of the state x̂t, is to choose these
optimization variables to minimize the objective function (6) while satisfying several constraints,
including satisfying the dynamics (2) (without the additive disturbance dt). We assume a constant
thrust is applied continuously during each time step and that there is a maximum thrust ū, which
results in the constraint

∥ut∥∞ ≤ ū. (7)

We define an additional constraint as the chaser gets near to the target so that it can stage itself for
docking by entering a line-of-sight (LoS) region for advanced sensors that are available in Phase 3
of the mission. We formulate this LoS constraint as a linear pyramid constraint in 3D as4

sin θ1(k)
2 cos θ1(k)

2 0

sin θ1(k)
2 − cos θ1(k)

2 0

sin θ2(k)
2 0 cos θ2(k)

2

sin θ2(k)
2 0 − cos θ2(k)

2


xtyt
zt

 ≤


0
0
0
0

 (8)

Finally, we apply a terminal velocity constraint defined as

∥[03×3 I3×3]xT ∥2 ≤ V̄ , (9)

where V̄ is the maximum velocity in m/s.

Given the objective (6) and the variables and constraints described above, we solve the following
optimization problem at each time t in a receding horizon fashion

min
ûk:k+T−1

Jt(x̂t, ût:t+T−1) (10)

subject to (2), (7), (8), (9).

7



The solution to the optimization problem (10) is the sequence of future control inputs that minimize
the objective function and is denoted as û∗

t:t+T−1 := {û∗
t , û

∗
t+1, . . . , û

∗
t+T−1}. At each time step

t the first element of the optimal control sequence û∗
t:t+T−1 is applied to the system, resulting in the

control law

ut = û∗
t .

In order to successfully transition from Phase 2 to Phase 3 of the ARPOD mission, the MPC
algorithm must be able to maneuver the chaser spacecraft into the LoS region before it is within 100
m (the radius of Phase 3) from the target. Incorporating a state constraint that requires the chaser’s
position to be within the LoS at the end of Phase 2 is an option, but it may lead to challenges with
feasibility of the MPC optimization problem. The way we handle this challenge in this work is to,
rather than drive the state to the origin, drive the state to a position at the center of the LoS region
while in Phase 2. This can be done by editing the x̂⊤

k Qx̂k term in the objective function.

NUMERICAL EXAMPLES

In this section, we compare the results of simulating each of the estimation algorithms with the
benchmark MPC for the spacecraft rendezvous and docking problem. Each simulation involves
solving the nonlinear relative motion dynamics (1) with the nonlinear measurements (3) and (4),
state estimates from a state estimation algorithm described in the State Estimation Algorithms Sec-
tion above, and MPC as described in the MPC Section above. All simulations use the system
parameters given in Table 1, the MPC parameters given in Table 2, and the specific estimation al-
gorithm parameter values given in Table 3. The true disturbance and noise covariances given in
Table 1 are known and are used in the design of the estimation algorithms, and the noise covari-
ances are updated in each phase according to the values used in (Ref. 4). All simulations are run
on a machine with a 4.7 GHz 16-Core AMD Ryzen 6800HS processor and use MATLAB’s ODE45
function to solve the nonlinear dynamics of the chaser spacecraft (i.e., (1)).

Table 1 System parameters.

Parameter Description Value Units

µ Earth’s gravitational constant 3.986× 1014 m3/s2

R Geostationary orbit semi-major axis 35.786× 106 + r m
m Mass of chaser spacecraft 500 kg
ū Maximum thrust 10 N
h Sampling time step 1 s
d̄ Mean process noise/disturbance value 06×1 km, km/s
v̄ Mean measurement noise value 03×1 rad, km

σd,x Position disturbance covariance 1× 10−3 km2

σd,ẋ Velocity disturbance covariance 1× 10−10 (km/s)2

σα Angle measurement covariance 1× 10−3 rad2

σe Angle measurement covariance 1× 10−3 rad2

σρ2 Phase 2 distance measurement covariance 1× 10−2 km2

σρ3 Phase 3 distance measurement covariance 1× 10−5 km2

In order to benchmark the algorithms, we run numerous simulations with randomly varying ini-
tial conditions using each algorithm and compare the total fuel consumption, algorithm computation
time, mission time, and root mean squared error (RMSE) of the state estimates. We simulate the

8



Table 2 MPC Parameters.
Parameter Description Value Units

T Forward Horizon 10 -
Qx Position weighting matrix 100 · I3×3 -
Qẋ Velocity weighting matrix 10000 · I3×3 -
Ru Input weighting matrix I3×3 -

Table 3 Estimation Algorithm Parameters.

EKF Parameter Description Value Units

Σ0 Initial state covariance 1× 10−50 km2

Qd Process disturbance covariance 1× 10−20 km2

Ry Measurement covariance 1× 10−3 rad2

PF Parameter Description Value Units

n Number of particles 1000 -
Qd Process disturbance covariance 1× 10−20 km2

Rα,e Measurement angle covariance 1× 102 rad2

Rρ Measurement distance covariance 1× 103 km2

S Effective sampling size threshold 700 -

MHE Parameter Description Value Units

L Backward horizon length 10 -
QMHE Process disturbance covariance weight 1× 1020 km2

Rα,e Angle measurement covariance weight 1× 103 rad2

Rρ Distance measurement covariance weight 1× 102 km2

closed-loop system with each state estimation algorithm 100 times in three different Cases to inves-
tigate the impact of starting distance from the target and measurement and process noise. Thus, we
run a total of 300 simulations per algorithm. The Cases are described as follows.

Case 1 involves simulation of the entire ARPOD mission from Phase 1 through Phase 3. It
only includes measurement noise vt and does not include process noise (i.e., dt = 0 for
all t). The initial conditions are uniformly sampled from positions from -5 km to 5 km and
velocities from -1 m/s to 1 m/s.

Case 2 is the same as Case 1 but with the addition of non-zero process noise dt as described
in 1, which significantly affects the performance of all of the state estimators.

Case 3 is the same as Case 2, but it starts the chaser spacecraft in a position in Phase 2,
so angle and range measurements are both available from the start. For this case, the initial
conditions are uniformly sampled from positions from -1 km to 1 km and velocities from
-0.01 m/s to 0.01 m/s.

As described in Table 1, we model the additive noise as zero-mean Gaussian random variables.
Thus d̄ = 0 and v̄ = 0, and the covariances are described as Σp for the process noise covariance,
Σs1 for the Phase 1 sensor noise covariance, Σs2 for the Phase 2 sensor noise covariance, and Σs3

9



for the Phase 3 sensor noise covariance:

Σp = diag[σd,x, σd,x, σd,x, σd,ẋ, σd,ẋ, σd,ẋ]

Σs1 = diag[σα, σe]

Σs2 = diag[σα, σe, σρ2]

Σs3 = diag[σα, σe, σρ3]

Figure 3 Simulation data for Case 1. The chaser position (left column), velocity
(middle column), and thrust (right column) are shown for 100 simulations with the
EKF (top row), PF (middle row), and MHE (bottom row).

The simulations highlight the tradeoff between computation time and performance, including
estimation accuracy and fuel consumption. The Case 1 results are shown in Figures 3, 4, and 5 and
Table 4. The statistics for the performance metrics shown in Figure 5 and Table 4 are calculated for
all 100 simulations of each state estimator and are broken down by the phase of the mission. The
estimation error is calculated as the root mean squared difference between the state estimates and
the true state at each time step. The computation time (or runtime) is calculated as the time it takes
to solve for the state estimate at each time step (i.e., it does not include the computation time to
solve the MPC problem). Then the statistics are computed over all time steps in each mission phase
for all 100 simulations.

10



Figure 4 Mission start (top row) and finish (bottom row) locations for all 100 simu-
lations in Case 1 with the EKF (left column), PF (middle column), and MHE (right
column). Note the difference in axis scaling in the bottom plots.

For Case 1, the performance differences between the algorithms, in terms of estimation accuracy
and fuel consumption, are minimal, but there is a difference in computation time. The EKF requires
the least computation time while the PF requires the most computation time. This case gives a
baseline for the results in Cases 2 and 3. Because of the nature of the EKF and the PF, the runtime
metric of these two is relatively consistent throughout all of the simulations. The runtime for MHE,
on the other hand, increases with increased computational complexity, such as including process
noise as in Cases 2 and 3.

The results for Case 2 are shown in Figures 6, 7, and 8 and Table 5. These results show the
increased MHE runtime as compared to the EKF and the PF but also the better performance of the
MHE in terms of estimation accuracy and fuel consumption as compared to the other estimators.
Note, using the EKF does not always result in successful docking, so the fuel consumption may
be irrelevant if the mission was not completed. While the PF and EKF runtimes stay relatively the
same as in Case 1, the MHE median runtime overall increases by 70ms per timestep. This is due
to the formulation of the dynamics in the MHE optimization problem (5). The addition of process
noise causes the MHE to require more iterations to converge. The process noise/disturbance also
affects the other state estimators in different ways. The EKF performance is heavily impacted by
the process disturbance, which can be seen in Figure 6. The EKF graphs show high variance and
diverging state values over time. In Figure 8, the estimation error of the EKF is much larger than
the other state estimators with the exception of Phase 3. The PF has much higher fuel consumption
compared to MHE during Phases 2 and 3. The median fuel consumption of the MHE approach
shown in Figure 8 is lower than the median fuel consumption of the PF approach, which means that
the MHE is not only able to achieve low estimation errors like the PF but also enables the MPC path
planner to rendezvous and dock with the target spacecraft more efficiently.

The Case 3 simulations do not have the challenges related to partial observability because the

11



EKF PF MHE
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

R
M

S
E

 P
o
s
 E

rr
o
r 

[m
]

10-7 RMSE Pos Error Graph Phase 1

EKF PF MHE
0

1

2

3

4

5

6

7

8

9

R
M

S
E

 P
o
s
 E

rr
o
r 

[m
]

10-7 RMSE Pos Error Graph Phase 2

EKF PF MHE
0

0.2

0.4

0.6

0.8

1

1.2

1.4

R
M

S
E

 P
o
s
 E

rr
o
r 

[m
]

10-6 RMSE Pos Error Graph Phase 3

EKF PF MHE

0

1

2

3

4

5

6

R
M

S
E

 P
o
s
 E

rr
o
r

10
-7 RMSE Pos Error Graph

EKF PF MHE
0

2

4

6

8

10

12

F
u

e
l 
[N

s
]

104 Fuel Graph Phase 1

EKF PF MHE
0

2

4

6

8

10

12

14

F
u

e
l 
[N

s
]

104 Fuel Graph Phase 2

EKF PF MHE
0

2

4

6

8

10

12

14

F
u

e
l 
[N

s
]

104 Fuel Graph Phase 3

EKF PF MHE
0

2

4

6

8

10

12

14

F
u

e
l 
[N

s
]

104 Fuel Consumption Ns Graph

EKF PF MHE
0

10

20

30

40

50

60

R
u

n
ti
m

e
 [

m
s
]

Runtime Graph Phase 1

EKF PF MHE
0

5

10

15

20

25

30

35

40

45

50

R
u

n
ti
m

e
 [

m
s
]

Runtime Graph Phase 2

EKF PF MHE
0

5

10

15

20

25

30

35

40

45

50

R
u

n
ti
m

e
 [

m
s
]

Runtime Graph Phase 3

EKF PF MHE
0

10

20

30

40

50

60

R
u

n
ti
m

e
 [

m
s
]

Runtime Graph

Figure 5 Statistics for the estimation accuracy, fuel consumption, and runtime met-
rics over all 100 simulations in Case 1. The columns show the statistics for the different
mission phases, and the rows show the different metrics. The box shows values within
the upper and lower quartiles, the horizontal line shows the median, and circles out-
side the whiskers represent outliers in the data.

chaser spacecraft starts in Phase 2. The MHE is the most successful in achieving docking. The
differences between the PF and MHE are highlighted in Figures 9 and 11. Figure 9 shows high
variance in the position, velocity, and thrust of the PF simulations, which shows that despite the
ability of the PF to achieve small estimation errors in Phase 2, its estimation may vary too much
to achieve efficient control with MPC. This is further shown in Figure 11 where the PF has mostly
higher fuel consumption compared to MHE. While it is mostly able to produce accurate state esti-
mates, the PF’s procedure of taking the weighted average of many particles makes it prone to the
noise of those particles. This is why the PF plots in Figure 9 do not converge in the same amount of
time as MHE. In fact, most of the PF simulations take 1500 seconds, which is the maximum time
the spacecraft is allocated to dock. Thus the spacecraft is often unable to dock with the PF. This is
further shown in Figures 10 and 11 where the PF simulations seem to end near the origin, but the
high fuel consumption shows that it is struggling to dock with the noisy estimates.

The tradeoff in runtime and performance is highlighted with the EKF being the fastest estimator
with the worst performance while the MHE is the slowest estimator with the best performance.
The EKF, while being fast, does not perform well when process noise/disturbances are introduced;
often the chaser does not successfully dock. The PF can reduce the error caused by the introduced
noise, but its implementation results in estimates that may be too noisy for the MPC to robustly
rendezvous/dock. This leaves the MHE to be the best performing state estimator when combined
with the MPC for rendezvous/docking.

12



Figure 6 Simulation data for Case 2. The chaser position (left column), velocity
(middle column), and thrust (right column) are shown for 100 simulations with the
EKF (top row), PF (middle row), and MHE (bottom row).

Comments on implementation

Each algorithm required a tuning process to maximize the performance of the algorithm. The
tunable EKF parameters are the process and sensor covariance matrices. These determine the state
calculation throughout the process. The EKF process covariance should be tuned first as it is in the
prediction step of the algorithm. Once the prediction is tuned, then the sensor covariance should be
updated to match the ground truth as much as possible. The PF has more parameters than just the
process and sensor covariances. The number of particles should be tuned according to the computa-
tional ability of the machine running it. Generally, more particles mean more accuracy in exchange
for longer runtime. The ESS Threshold should also be tuned according to the computational ability
of the machine since it performs resampling over all of the particles. The higher the ESS Threshold,
the more resampling is performed which results in higher performance for the PF in exchange for
longer runtime. The process covariance for the PF should be tuned much the same as the EKF, but
the sensor covariance should not be. The sensor covariance determines the weights of the particles
during estimation which if it is too inaccurate, would result in numerical errors and prevent the PF
from performing effective state estimation. The tuning process should then be increasing/decreasing
the sensor covariance such that it can appropriately weigh the particles according to the sensor mea-

13



Figure 7 Mission start (top row) and finish (bottom row) locations for all 100 simu-
lations in Case 2 with the EKF (left column), PF (middle column), and MHE (right
column). Note the difference in axis scaling in the bottom plots.

surement without decreasing the weights so small that they result in numerical errors (such as a
divide by zero error). The MHE should be tuned much the same as the EKF, however since the
MHE uses weights in the objective function, the weighting matrices should be increased if there is
higher weighted importance on that specific element.

There are several variations on these state estimation algorithm implementations that could im-
prove their performance. One improvement for the PF could be to utilize other resampling methods
other than ESS Threshold resampling, which could boost the PF performance. For MHE, a forget-
ting factor could be added to weight older measurements differently than more recent measurements,
which could improve performance during particular spacecraft maneuvers.

When in Phase 1, it is better to keep the covariance/cost matrix for the algorithms to greatly
outweigh the sensor covariance to improve performance when the state is only partially observable.
For the EKF and PF, the process covariance matrices should have much smaller elements to provide
a higher weight in the model. For the MHE, the cost matrix for the dynamics QMHE should be much
higher than R in order to put more weight on optimizing for states that follow the dynamics than
the sensor measurements.

CONCLUSION

We presented an Extended Kalman Filter (EKF), a Particle Filter (PF), and Moving Horizon
Estimation (MHE) for state estimation in a spacecraft autonomous rendezvous and docking mission
when only noisy nonlinear relative angle and range measurements are available and in the presence
of process disturbances. We compared the performance of these three estimation algorithms when
paired with a benchmark Model Predictive Controller in terms of estimation accuracy, computation
time, overall mission time, and fuel consumption. We found a tradeoff between computational
time and performance, and differences in performance between the estimation algorithms were

14



EKF PF MHE
0

5

10

15

20

25

30

35

R
M

S
E

 P
o
s
 E

rr
o
r 

[m
]

RMSE Pos Error Graph Phase 1

EKF PF MHE
0

0.5

1

1.5

2

2.5

3

R
M

S
E

 P
o
s
 E

rr
o
r 

[m
]

RMSE Pos Error Graph Phase 2

EKF PF MHE
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

R
M

S
E

 P
o

s
 E

rr
o

r 
[m

]

RMSE Pos Error Graph Phase 3

EKF PF MHE

0

5

10

15

20

25

30

35

R
M

S
E

 P
o
s
 E

rr
o
r

RMSE Pos Error Graph

EKF PF MHE
0

0.5

1

1.5

2

2.5

F
u

e
l 
[N

s
]

105 Fuel Graph Phase 1

EKF PF MHE
0

0.5

1

1.5

2

2.5

3

3.5

F
u
e
l 
[N

s
]

105 Fuel Graph Phase 2

EKF PF MHE
0

0.5

1

1.5

2

2.5

3

3.5

F
u
e
l 
[N

s
]

105 Fuel Graph Phase 3

EKF PF MHE
0

0.5

1

1.5

2

2.5

3

3.5

F
u
e
l 
[N

s
]

105 Fuel Consumption Ns Graph

EKF PF MHE
0

50

100

150

200

250

300

350

400

R
u
n
ti
m

e
 [
m

s
]

Runtime Graph Phase 1

EKF PF MHE
0

50

100

150

200

250

300

350

400

R
u

n
ti
m

e
 [

m
s
]

Runtime Graph Phase 2

EKF PF MHE
0

50

100

150

200

250

300

350

400

450

500

R
u

n
ti
m

e
 [

m
s
]

Runtime Graph Phase 3

EKF PF MHE
0

50

100

150

200

250

300

350

400

R
u

n
ti
m

e
 [

m
s
]

Runtime Graph

Figure 8 Statistics for the estimation accuracy, fuel consumption, and runtime met-
rics over all 100 simulations in Case 2. The columns show the statistics for the different
mission phases, and the rows show the different metrics. The box shows values within
the upper and lower quartiles, the horizontal line shows the median, and circles out-
side the whiskers represent outliers in the data.

more significant when there was process noise. MHE had the smallest estimation error and fuel
consumption but the largest computation time. The EKF had the smallest computation time but the
largest estimation error and greater fuel consumption than MHE. Moreover, using the EKF did not
result in successful docking when there were process disturbances/noise. The PF performed almost
as well as MHE in terms of estimation accuracy but required a little less computation time and had
greater and much more varying fuel consumption between simulations.

ACKNOWLEDGEMENT

This work was supported by UCI’s Undergraduate Research Opportunities Program (UROP) and
the Air Force Office of Scientific Research (AFOSR) through the Air Force Research Laboratory
(AFRL) Summer Faculty Fellowship Program.

REFERENCES
[1] K. L. Hobbs, J. B. Lyons, M. S. Feather, B. P. Bycroft, S. Phillips, M. Simon, M. Harter, K. Costello, Y. Gawdiak,

and S. Paine, “Space Trusted Autonomy Readiness Levels,” IEEE Aerospace, IEEE, 2023.
[2] C. Petersen, S. Phillips, K. L. Hobbs, and K. Lang, “Challenge Problem: Assured Satellite Proximity Operations,”

31st AAS/AIAA Space Flight Mechanics Meeting, 2021.
[3] K. Lang, C. Klett, K. Hawkins, E. Feron, P. Tsiotras, and S. Phillips, “Formal Verification Applied to Spacecraft

Attitude Control,” AIAA Scitech 2021 Forum, 2021.
[4] C. Jewison and R. S. Erwin, “A spacecraft benchmark problem for hybrid control and estimation,” 2016 IEEE 55th

Conference on Decision and Control (CDC), IEEE, 2016, pp. 3300–3305.

15



0 50 100 150 200 250 300

Time [s]

-1.5

-1

-0.5

0

0.5

1

1.5

P
o
s
 [
k
m

]

MHE Position

x

y

z

0 50 100 150 200 250 300

Time [s]

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

V
e

lo
c
it
y
 [

k
m

/s
]

MHE Velocity

vx

vy

vz

0 50 100 150 200 250 300

Time [s]

-0.01

-0.005

0

0.005

0.01

0.015

T
h
ru

s
t 
[k

m
/s

2
]

MHE Thrust

ux

uy

uz

Figure 9 Simulation data for Case 3. The chaser position (left column), velocity
(middle column), and thrust (right column) are shown for 100 simulations with the
EKF (top row), PF (middle row), and MHE (bottom row).

[5] J. B. Rawlings, D. Q. Mayne, and M. Diehl, Model predictive control: theory, computation, and design, Vol. 2. Nob
Hill Publishing Madison, WI, 2017.

[6] D. Malyuta, Y. Yu, P. Elango, and B. Açıkmeşe, “Advances in trajectory optimization for space vehicle control,”
Annual Reviews in Control, Vol. 52, 2021, pp. 282–315.

[7] A. Weiss, I. Kolmanovsky, M. Baldwin, and R. S. Erwin, “Model predictive control of three dimensional spacecraft
relative motion,” 2012 American Control Conference (ACC), IEEE, 2012, pp. 173–178.

[8] C. Jewison, R. S. Erwin, and A. Saenz-Otero, “Model predictive control with ellipsoid obstacle constraints for
spacecraft rendezvous,” IFAC-PapersOnLine, Vol. 48, No. 9, 2015, pp. 257–262.

[9] A. Weiss, M. Baldwin, R. S. Erwin, and I. Kolmanovsky, “Model predictive control for spacecraft rendezvous and
docking: Strategies for handling constraints and case studies,” IEEE Transactions on Control Systems Technology,
Vol. 23, No. 4, 2015, pp. 1638–1647.

[10] E. N. Hartley, “A tutorial on model predictive control for spacecraft rendezvous,” 2015 European Control Confer-
ence (ECC), IEEE, 2015, pp. 1355–1361.

[11] E. N. Hartley, P. A. Trodden, A. G. Richards, and J. M. Maciejowski, “Model predictive control system design and
implementation for spacecraft rendezvous,” Control Engineering Practice, Vol. 20, No. 7, 2012, pp. 695–713.

[12] E. N. Hartley, M. Gallieri, and J. M. Maciejowski, “Terminal spacecraft rendezvous and capture with LASSO model
predictive control,” International Journal of Control, Vol. 86, No. 11, 2013, pp. 2104–2113.

[13] A. Zaman, A. A. Soderlund, C. Petersen, and S. Phillips, “Autonomous Satellite Rendezvous and Proximity Oper-
ations via Model Predictive Control Methods,” AAS Spaceflight Mechanics Meeting, 2021.

[14] A. Gelb et al., Applied optimal estimation. MIT press, 1974.

16



Figure 10 Mission start (top row) and finish (bottom row) locations for all 100 sim-
ulations in Case 3 with the EKF (left column), PF (middle column), and MHE (right
column). Note the difference in axis scaling in the bottom plots.

[15] C. W. Hays, K. Miller, A. Soderlund, S. Phillips, and T. Henderson, “Autonomous Local Catalog Maintenance of
Close Proximity Satellite Systems on Closed Natural Motion Trajectories,” AAS GNC Conference, 2023.

[16] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle filters for online nonlinear/non-
Gaussian Bayesian tracking,” IEEE Transactions on signal processing, Vol. 50, No. 2, 2002, pp. 174–188.

[17] C. V. Rao, J. B. Rawlings, and D. Q. Mayne, “Constrained state estimation for nonlinear discrete-time systems:
Stability and moving horizon approximations,” IEEE transactions on automatic control, Vol. 48, No. 2, 2003,
pp. 246–258.

[18] E. L. Haseltine and J. B. Rawlings, “Critical evaluation of extended Kalman filtering and moving-horizon estima-
tion,” Industrial & engineering chemistry research, Vol. 44, No. 8, 2005, pp. 2451–2460.

[19] B. Wie, Space vehicle dynamics and control. AIAA, 1998.
[20] G. W. Hill, “Researches in the lunar theory,” American journal of Mathematics, Vol. 1, No. 1, 1878, pp. 5–26.
[21] W. Clohessy and R. Wiltshire, “Terminal guidance system for satellite rendezvous,” Journal of the Aerospace Sci-

ences, Vol. 27, No. 9, 1960, pp. 653–658.

17



EKF PF MHE
0

1

2

3

4

5

6

7

8

R
M

S
E

 P
o
s
 E

rr
o
r 

[m
]

RMSE Pos Error Graph Phase 2

EKF PF MHE
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

R
M

S
E

 P
o
s
 E

rr
o
r 

[m
]

RMSE Pos Error Graph Phase 3

EKF PF MHE

0

10

20

30

40

50

60

70

80

90

100

R
M

S
E

 P
o

s
 E

rr
o

r

RMSE Pos Error Graph

EKF PF MHE
0

0.5

1

1.5

2

2.5

3

3.5

F
u

e
l 
[N

s
]

105 Fuel Graph Phase 2

EKF PF MHE
0

0.5

1

1.5

2

2.5

3

3.5

F
u
e
l 
[N

s
]

105 Fuel Graph Phase 3

EKF PF MHE
0

0.5

1

1.5

2

2.5

3

3.5

F
u
e
l 
[N

s
]

105 Fuel Consumption Ns Graph

EKF PF MHE
0

50

100

150

200

250

300

R
u
n
ti
m

e
 [
m

s
]

Runtime Graph Phase 2

EKF PF MHE
0

50

100

150

200

250

300

350

400

450

R
u

n
ti
m

e
 [

m
s
]

Runtime Graph Phase 3

EKF PF MHE
0

50

100

150

200

250

300
R

u
n

ti
m

e
 [

m
s
]

Runtime Graph

Figure 11 Statistics for the estimation accuracy, fuel consumption, and runtime met-
rics over all 100 simulations in Case 3. The columns show the statistics for the different
mission phases, and the rows show the different metrics. The box shows values within
the upper and lower quartiles, the horizontal line shows the median, and circles out-
side the whiskers represent outliers in the data.

18



Table 4 Estimation performance for Case 1 with measurement noise vt. E(x) and E(ẋ)
denote the root mean squared error of the state’s position and velocity, respectively. c.t. and
m. t. denote “computation time” at each time step and “mission time,” respectively.

Phase 1 Phase 2 Phase 3 Entire Mission

Metric Units EKF PF MHE EKF PF MHE EKF PF MHE EKF PF MHE

mean{E(x)} m 1e-7 1.3e-7 1.6e-7 2.3e-7 2.8e-7 2.2e-7 3.5e-7 4.1e-7 3.3e-7 1.5e-7 1.9e-7 1.8e-7
stdev{E(x)} m 8.9e-8 1.1e-7 1.5e-7 2e-7 2.4e-7 2.1e-7 3e-7 3.4e-7 3e-7 1.3e-7 1.6e-7 1.6e-7
max{E(x)} m 3.6e-7 4.6e-7 1.5e-6 9e-7 1e-6 9e-7 1.4e-6 1.5e-6 1.4e-6 6.3e-7 6.6e-7 1.2e-6
min{E(x)} m 7e-10 2.5e-9 5.9e-8 7.5e-9 1.6e-8 7.4e-9 1.3e-8 1.9e-8 1.3e-8 5.3e-9 7.4e-9 4.7e-8

mean{E(x)} m/s 4.7e-10 5.6e-10 4.5e-9 6.3e-10 7.2e-10 6e-10 7.3e-10 7.7e-10 6.4e-10 5.3e-10 6.2e-10 3e-9
stdev{E(x)} m/s 3e-10 3.4e-10 9.7e-9 3.8e-10 4.3e-10 3.9e-10 4.6e-10 4.5e-10 4.1e-10 3.2e-10 3.7e-10 7.4e-9
max{E(x)} m/s 1.3e-9 1.5e-9 9.5e-8 1.7e-9 1.7e-9 1.7e-9 2.5e-9 1.9e-9 1.8e-9 1.4e-9 1.5e-9 7.4e-8
min{E(x)} m/s 2.7e-11 5.8e-11 1.2e-9 4.9e-11 9.7e-11 4.8e-11 5.5e-11 1e-10 5e-11 4.4e-11 8.6e-11 9.7e-10

mean{c.t.} s 7.7e-5 4.6e-2 1.7e-2 6.2e-5 4.3e-2 1.9e-2 5.8e-5 4.5e-2 2e-2 7.2e-5 4.5e-2 1.8e-2
stdev{c.t.} s 7e-4 9.5e-3 5.8e-3 1.2e-4 7.3e-3 5.8e-3 5e-5 1.2e-2 5.8e-3 5.6e-4 9.1e-3 5.9e-3
max{c.t.} s 1e-1 2.3e-1 2.7e-1 10e-3 2.1e-1 1e-1 9.7e-4 2e-1 9.8e-2 1e-1 2.3e-1 2.7e-1
min{c.t.} s 0 0 0 1.8e-5 2.7e-2 1e-2 1.8e-5 2.7e-2 1.2e-2 0 0 0

mean{m.t.} s - - - - - - - - - 5.8e2 6.1e2 5.7e2
stdev{m.t.} s - - - - - - - - - 2e2 2e2 2e2
max{m.t.} s - - - - - - - - - 1e3 1e3 1e3
min{m.t.} s - - - - - - - - - 1.7e2 1.8e2 1.7e2

mean{fuel} Ns - - - - - - - - - 1.4e2 1.5e2 1.4e2
stdev{fuel} Ns - - - - - - - - - 4.8e1 4.9e1 4.8e1
max{fuel} Ns - - - - - - - - - 2.5e2 2.7e2 2.5e2
min{fuel} Ns - - - - - - - - - 3.2e1 3.8e1 3.2e1

Table 5 Estimation performance for Case 2 with measurement noise vt and process distur-
bances dt. E(x) and E(ẋ) denote the root mean squared error of the state’s position and
velocity, respectively. c.t. and m. t. denote “computation time” at each time step and “mission
time,” respectively.

Phase 1 Phase 2 Phase 3 Entire Mission

Metric Units EKF PF MHE EKF PF MHE EKF PF MHE EKF PF MHE

mean{E(x)} m 1.2e1 6.9e-2 6.3e-2 1.4e0 9.9e-2 8.9e-2 1.1e-1 1.1e-1 1e-1 1.1e1 9.4e-2 7.3e-2
stdev{E(x)} m 1.4e1 2.6e-2 2.8e-2 2.1e0 4.5e-2 4e-2 1.3e-1 6.2e-2 5e-2 1.4e1 4e-2 3.1e-2
max{E(x)} m 7.5e1 1.5e-1 1.5e-1 1.3e1 2.8e-1 2.1e-1 6.5e-1 3.4e-1 2.4e-1 7.2e1 2.6e-1 1.7e-1
min{E(x)} m 4e-2 3.1e-2 2.1e-2 7.7e-2 3.2e-2 1.8e-2 2.9e-3 1.9e-2 8.9e-3 2e-2 3.8e-2 2.1e-2

mean{E(x)} m/s 5.5e-5 1e-7 8.9e-8 6.1e-6 4.2e-7 2.2e-7 3.1e-6 6.8e-7 3.5e-7 5.1e-5 4.3e-7 1.4e-7
stdev{E(x)} m/s 7.5e-5 8.1e-8 8.2e-8 8.6e-6 3.3e-7 2.1e-7 6.3e-6 6.1e-7 3.3e-7 7.1e-5 3.5e-7 1.3e-7
max{E(x)} m/s 4.4e-4 4.2e-7 4.3e-7 4.3e-5 2e-6 1.2e-6 3.5e-5 3.8e-6 1.9e-6 4.2e-4 2.2e-6 7.4e-7
min{E(x)} m/s 2e-8 6.6e-9 6.4e-9 5.1e-8 1.8e-8 4.1e-9 2e-8 2.3e-8 6.4e-9 5.1e-8 1.2e-8 5.8e-9

mean{c.t.} s 7.5e-5 2.5e-2 3.1e-1 6.9e-5 2.3e-2 3.3e-1 5.9e-5 2.3e-2 2.7e-1 7.3e-5 2.4e-2 3.1e-1
stdev{c.t.} s 4.5e-4 5.2e-3 7.8e-2 1.8e-4 4.1e-3 5e-2 2.6e-5 4.2e-3 9.9e-2 4.1e-4 4.6e-3 7.2e-2
max{c.t.} s 7.7e-2 1.9e-1 1.6e0 1.2e-2 1.2e-1 1.6e0 1.1e-3 1.1e-1 1.6e0 7.7e-2 1.9e-1 1.6e0
min{c.t.} s 0 0 0 2.5e-5 1.6e-2 1.1e-2 4.1e-5 1.7e-2 1.9e-2 0 0 0

mean{m.t.} s - - - - - - - - - 1.5e3 1.3e3 5.8e2
stdev{m.t.} s - - - - - - - - - 9.4e1 3.3e2 1.9e2
max{m.t.} s - - - - - - - - - 1.5e3 1.5e3 1e3
min{m.t.} s - - - - - - - - - 5.6e2 1.9e2 1.7e2

mean{fuel} Ns - - - - - - - - - 3.5e2 4.2e2 1.4e2
stdev{fuel} Ns - - - - - - - - - 5.8e1 1.2e2 4.8e1
max{fuel} Ns - - - - - - - - - 4.8e2 6.9e2 2.5e2
min{fuel} Ns - - - - - - - - - 1.6e2 6.2e1 3.2e1

19



Table 6 Estimation performance for Case 3 with measurement noise vt and process distur-
bances dt. E(x) and E(ẋ) denote the root mean squared error of the state’s position and
velocity, respectively. c.t. and m. t. denote “computation time” at each time step and “mission
time,” respectively.

Phase 2 Phase 3 Entire Mission

Metric Units EKF PF MHE EKF PF MHE EKF PF MHE

mean{E(x)} m 3.4e0 4.3e-2 2.3e-2 6.6e-2 5.4e-2 2.5e-2 2.7e1 4.9e-2 2.2e-2
stdev{E(x)} m 7.8e0 3e-2 1.9e-2 1.1e-1 3.7e-2 1.8e-2 3.2e1 3.5e-2 1.5e-2
max{E(x)} m 5.6e1 1.5e-1 1e-1 5.1e-1 1.8e-1 10e-2 9.6e1 1.6e-1 8e-2
min{E(x)} m 7.8e-2 8.8e-3 5.2e-3 2.9e-3 1.2e-2 4.1e-3 6.6e-3 1e-2 5.2e-3

mean{E(x)} m/s 1.1e-5 2.1e-7 2.7e-8 1.1e-7 3.1e-7 2.2e-8 1.6e-4 2.7e-7 2.7e-8
stdev{E(x)} m/s 2.8e-5 2.6e-7 7.3e-8 1.8e-7 3.8e-7 3.1e-8 1.9e-4 3.4e-7 4.9e-8
max{E(x)} m/s 2.1e-4 1.2e-6 7.2e-7 9.2e-7 1.7e-6 1.9e-7 5.8e-4 1.4e-6 4.7e-7
min{E(x)} m/s 3.2e-9 1.2e-9 2.6e-9 3.2e-9 2e-9 1e-9 3.3e-9 1.3e-9 7e-9

mean{c.t.} s 7.4e-5 2e-2 2.1e-1 4.9e-5 1.9e-2 1.6e-1 6e-5 1.9e-2 2e-1
stdev{c.t.} s 6.2e-4 9.4e-3 5e-2 9.4e-5 8.6e-3 7.3e-2 4.7e-4 8.9e-3 6.4e-2
max{c.t.} s 5.7e-2 1.5e-1 7.8e-1 1.3e-2 1.4e-1 5.3e-1 9.2e-2 1.5e-1 7.8e-1
min{c.t.} s 0 0 0 2.7e-5 1.5e-2 2.5e-2 0 0 0

mean{m.t.} s - - - - - - 1.5e3 8e2 1.4e2
stdev{m.t.} s - - - - - - 1.4e2 6.1e2 4.7e1
max{m.t.} s - - - - - - 1.5e3 1.5e3 3.2e2
min{m.t.} s - - - - - - 1.1e2 1.1e2 7.3e1

mean{fuel} Ns - - - - - - 3.3e2 2.7e2 3.7e1
stdev{fuel} Ns - - - - - - 8.3e1 2.1e2 9e0
max{fuel} Ns - - - - - - 5.1e2 6.7e2 6.1e1
min{fuel} Ns - - - - - - 5.1e1 3.3e1 1.9e1

20


	Introduction
	Problem Formulation
	Measurement Model

	State Estimation Algorithms
	Extended Kalman Filter (EKF)
	Particle Filter (PF)
	Moving Horizon Estimation (MHE)

	MPC for spacecraft rendezvous and docking
	Numerical Examples
	Comments on implementation

	Conclusion
	Acknowledgement

