
AAS 23-026

PLANNING AUTONOMOUS SPACECRAFT RENDEZVOUS AND
DOCKING TRAJECTORIES VIA REINFORCEMENT LEARNING*

Vincent Chen,† Sean A. Phillips,‡ and David A. Copp†

We present a Proximal Policy Optimization (PPO) Reinforcement Learning algo-
rithm for three-dimensional autonomous spacecraft trajectory planning. Specifically,
we consider a chaser spacecraft performing a rendezvous and docking mission with
a target spacecraft on a circular orbit. This reinforcement learning approach utilizes
an actor and critic method to plan safe trajectories for the chaser spacecraft given
constraints on its motion, including maximum thrust and line-of-sight constraints.
We consider a fully actuated chaser spacecraft capable of applying continuous thrust
in all three dimensions. Given this action space, we train a PPO model to perform
rendezvous and docking maneuvers using spacecraft relative motion dynamics. We
describe the training procedure and environment in detail and present results of nu-
merous simulations showing that the trained model produces successful rendezvous
trajectories that satisfy line-of-sight constraints, even when starting far from the tar-
get with significant random variations in initial positions and velocities. Finally, we
present statistics on performance, including the terminal state reached, mission time,
fuel consumption, and computation time.

INTRODUCTION

As the number of applications for autonomous spacecraft increases, so does the need for path
planning algorithms that are safe and can adapt to complex and dynamic environments. One class
of such applications is spacecraft Autonomous Rendezvous, Proximity Operations, and Docking
(ARPOD) missions, where a chaser spacecraft is tasked with rendezvous and docking with a passive
(non-actuated) target spacecraft on orbit. The rendezvous and docking operation mainly consists of
three phases: an approach, an alignment, and a securing of the attachment. The different phases
of an ARPOD mission are shown in Figure 1. These missions are challenging due to a number
of factors including uncertain environments, actuation constraints, and limited sensing capability.
Therefore, planning safe trajectories for a chaser spacecraft that are also time and fuel efficient is an
important and challenging problem.

There have been many recent advances in trajectory optimization for space vehicle control,1 all
with varying sensing and actuation constraints. Perhaps one of the first trajectory optimization algo-
rithms for satellite reconfiguration maneuvers with position and attitude constraints was proposed
in (Ref. 2). Feedback control methods, such as Model Predictive Control (MPC) have proved
successful in ARPOD missions, and there is significant literature on the topic.3–6 Although MPC
formulations have shown robust results in each individual phase of an ARPOD mission, discontinu-
ities between phases can affect performance and feasibility of latter phases. This can be particularly

*APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED. PUBLIC AFFAIRS APPROVAL
#AFRL-2023-1822.

†University of California, Irvine. Irvine, CA 92697, USA.
‡Space Vehicles Directorate, Air Force Research Laboratory, Kirtland AFB, NM 87117, USA. The views expressed

are those of the authors and do not reflect the official guidance or position of the United States Government, the Depart-
ment of Defense or of the United States Air Force.

1

Figure 1: Depiction of ARPOD mission phases. Phase 1 of the mission is the initial phase of the
rendezvous maneuver when only relative angle measurements are available. Phase 2 involves the
rendezvous maneuver when both relative angle and range measurements are available. Phase 3 is
the docking phase.

problematic between phases 2 and 3, where the chaser transitions from approach velocities to a
more constrained docking maneuver. Additionally, with discrete phases, motion near the edge of a
phase transition may result in undesired cyclic policy switching between phase definitions. Often
the mission dynamics and constraints are simplified to enable MPC approaches that are discrete
time, linear, and convex to improve feasibility and computational performance for real-time appli-
cation. Therefore, there is room to improve existing algorithms for autonomous rendezvous and
docking that result in higher fidelity simulations and formal safety and performance guarantees.

Learning algorithms may be advantageous for addressing these challenges and can perform well
in unknown and complex environments. There are several examples of existing work that apply
reinforcement learning techniques to spacecraft guidance, navigation, and control problems. For
example, learning algorithms have been applied to individual phases of the docking missions with-
out obstacles.7 A policy for 3-DoF proximity operations using a deep policy gradient method was
recently developed and experimentally validated,8 and the effect of run time assurance on reinforce-
ment learning training performance for satellite docking problems has been studied.9 Surprisingly,
not much work has been done on generating full mission trajectories by leveraging strengths of
learning algorithms to consider all constraints and phase transitions simultaneously in higher fi-
delity models.

Proximal Policy Optimization (PPO),10 which is an online policy gradient method for reinforce-
ment learning, may be capable of planning for all mission constraints starting far from the target,
thereby eliminating the need for a phased approach and its associated policy switching at phase tran-
sitions. PPO has previously been applied to spacecraft relative motion and docking problems,11–13

and PPO has been shown to be effective for problems with large and complex observation and ac-

2

tion spaces outside of spacecraft relative motion, too, including an impressive demonstration from
OpenAI that uses PPO to play the competitive multiplayer game Dota 2.14 In this case, PPO handles
a nonlinear continuous observation domain, large action domain, long term dependencies, and vari-
able episode time. Therefore, PPO is capable of producing policies in computationally challenging
environments without compromising run-time.

In this work, we design a PPO algorithm for a spacecraft rendezvous and docking problem and
analyze its performance to plan efficient and constrained trajectories between phases 2 and 3 of an
ARPOD mission. We follow the formulation of a spacecraft benchmark problem15 and specifically
consider a chaser spacecraft attempting to rendezvous and dock with a non-actuated target space-
craft. We start the mission close enough to the target such that both angle and range measurements
are available but sufficiently far away so that the chaser is not yet considered to be in the docking
phase. Moreover, we assume that the full state can be estimated from these measurements, and
we use full state information to design the learning algorithms that calculate trajectories (includ-
ing position, velocity, and actuation) to complete the rendezvous and docking mission. To make
the model aware of mission constraints, such as maximum thrust and staying within a line-of-sight
(LoS) region, we formulate the model feedback through a predefined reward function.

To avoid problems associated with transitioning between mission phases, we take advantage of
a learning-based approach to plan longer trajectories than span both phases 2 and 3 of an ARPOD
mission. We modify the nonlinear LoS cone from the benchmark problem15 by extending from
100 meters to 800 meters from the docking port with an opening angle of 60 degrees so that the
trained model will learn to start alignment with the docking port much sooner, resulting in smoother
trajectories and higher likelihood of successful docking without the challenges of ensuring a feasible
trajectory upon entering the docking phase.

Our approach is largely motivated by (Ref. 12), where a PPO algorithm for a 3-DoF chaser
spacecraft performing rendezvous is proposed. We extend this work to consider phases 2 and 3 of
the full mission starting from farther away from the target, a reward formulation that considers fuel
consumption for more fuel-efficient trajectories, and an LoS constraint. Other differences include
continuous rather than impulsive thrust, a chaser spacecraft with larger mass and different thrust
constraints, and differences in PPO implementation details. We evaluate the resulting trained model
by performing 100 Monte Carlo Simulations with significant random variations in initial positions
and velocities and record mission completion time, fuel consumed, terminal states, and computation
time per step in the model.

PROBLEM FORMULATION

We consider a passive (non-actuated) target spacecraft that is orbiting in a circular Keplerian
orbit. Then the equations for relative motion between an active chaser spacecraft and the passive
target are16

ẍ− 2nẏ − n2(R+ x) + µ
R+ x

((R+ x)2 + y2 + z2)
3
2

= ux

ÿ + 2nẋ− n2y + µ
y

((R+ x)2 + y2 + z2)
3
2

= uy

z̈ + µ
z

((R+ x)2 + y2 + z2)
3
2

= uz.

(1)

3

These nonlinear translational spacecraft relative motion dynamics describe the chaser spacecraft’s
position and velocity in a local-vertical/local-horizontal (LVLH) frame with reference fixed on the
center of gravity of the target spacecraft. The states x := [x y z ẋ ẏ ż]⊤ ∈ R6 include the space-
craft’s position and velocity. The state x denotes the position in the radial direction (from earth), also
known as the cross-track direction, y denotes the position in the in-track direction, and z denotes the
position in the cross-track direction that completes the right-hand coordinate system with x and y.
We consider six continuously variable thrusters that provide thrust in the positive and negative di-
rection of each dimension and define the thrust actuation control inputs as u := [ux uy uz]

⊤ ∈ R3.
R denotes the orbit radius of the target spacecraft, n =

√
µ/R3 is the angular speed, or “mean

motion,” of the target through its orbit, and µ is the Earth’s gravitational constant.

When the chaser is close to the target, the nonlinear spacecraft relative motion dynamics (1)
can be linearized around the target’s position, which gives the following Hill-Clohessy-Wiltshire
(HCW) equations17, 18

ẍ− 3n2x− 2nẏ = ux, ÿ + 2nẋ = uy, z̈ + n2z = uz. (2)

We assume that the chaser spacecraft has six thrusters capable of continuously variable thrust, so
the three control inputs are continuously variable up to a maximum thrust of ū. Thus, ux, uy, and uz
can all take values within the set [−ū ū]. We assume that the full state x is available for training and
testing. In the examples to follow, we use the linear dynamics (2) to design the learning algorithms
and simulate those same dynamics when testing the learned model.

Therefore, for the rendezvous and docking mission, the problem is to find control inputs u that
drive the state of the chaser spacecraft x to zero (i.e., the origin of the LVLH reference frame cen-
tered at the target’s position) given full state feedback. In the following, we design and implement
a PPO algorithm to solve this problem.

PROXIMAL POLICY OPTIMIZATION

PPO is a policy gradient method of reinforcement learning that uses a neural network πθ, to
parameterize an agent’s policy with weighting parameters θ. To do so, the network iteratively
optimizes weights through gradient descent based on a reward function evaluated during repeated
simulations of an environment. This reward is maximized to achieve the ultimate goal of minimizing
an objective loss function L(θ). The resulting policy πθ is a neural network that maps input variables
to mean µ and log standard deviations σ of each action to form independent normal distributions
representing the action. These distributions are sampled to determine each corresponding control
action (i.e., thrust).

Training using PPO consists of two parts: a roll-out phase and an update phase. In the roll-out
phase, the agent uses a randomly initialized πθ to navigate the space using equations (2). Every
step the agent returns a control input to the environment from which futures states (observations)
are calculated using the dynamics (2) and fed back to the agent. The agent uses the data it collects
every T intervals to optimize its parameters further. These data include the actions from the agent
(control inputs), the agent’s perceived log probability of taking that action, the reward feedback, and
the new state resulting from the action. These metrics are used to compute the optimal update to the
network parameters θ.

4

Actor Critic Method

Our PPO formulation consists of two distinct neural networks that do not share parameters: the
actor and the critic. The actor network learns to parameterize the control policy within its network
architecture. Specifically, the actor follows a policy πθp(st) that takes the current state observation
st as input and returns a mean value for each element in the action space. Additionally, the actor
stores parameters independent of the feed-forward network, which predict the log standard devia-
tions of each action component. With both the standard deviation and mean of an action component,
PPO models the continuous action space as a set of independent Gaussian distributions that better
characterize non-discrete decisions. The approximate standard deviation is derived by exponentia-
tion of the log standard deviations. Each distribution is sampled to obtain an action at (i.e., control
input), at each time step t. Compared to most other machine learning algorithms, PPO’s unique
Gaussian action representation gives an idea of how confident the model is in its actuation at a given
state. As the standard deviation converges to a minima, we see less exploration and more exploita-
tion of learned experiences. This intuition of the network’s confidence is then applied to calculate
the advantage, a scalar quantifying the quality between two decisions.

The other network (the critic network) also receives the same input, however the network learns
to output a single scalar value Vθc(st) that predicts the expected cumulative reward starting from st
for the episode under policy πθp(st).

At every step we sample and record the observation st, the action taken at, the reward rt, the
value prediction Vθc(st), and the log probability log(at|st) in order to carry out policy updates at
the end of a roll-out (i.e., a collection of step samples). The policy πθp(st) makes T iterations to
accumulate T step samples of st, at, rt, Vθc(st), and log(at|st). The sampled data are used to
calculate the advantage AGAE, the policy ratio ρ, and the entropy H over the set of possible actions.

We apply value bootstrapping to episodes that end before the time limit of the environment. To
achieve this we denote Termination as a boolean variable where Termination = 1 when an episode
ends as a result of reaching the time limit and Termination = 0 otherwise. Then, the critic network
evaluates a policy using the Generalized Advantage Estimate AGAE given as

AGAE =
T−1∑
k=t

(γλ× Termination)k−tδk,

where

δt = rt + γVθc(st+1)× (1− Termination)− Vθc(st).

Here, δt is the “TD-error”, which represents the temporal difference between the true reward rt and
the critic network’s estimate of rt. Since Vθc(st) is the predicted sum of future rewards starting
from t for the episode, the critic network’s estimated reward at step t is calculated as the difference
Vθc(st+1) − Vθc(st). To include consistent discounting, the full TD-error is γVθc(st+1) − Vθc(st),
where γ is the discount factor. Another Variable λ ∈ [0 1] balances bias and variance in advantage
estimates. This is a variation of the typical advantage formulation seen in older actor critic based
models such as TRPO.19 Given the Generalized Advantage Estimate, the returns are calculated at
each step t as

Gt = AGAE + Vθc(st). (3)

5

Roll-out samples paired with respective advantage values at index t are then shuffled and split
into subsets of the roll-out. The subsets, commonly referred to as mini-batches or batches, will
determine values for the policy ratio ρ, and action entropy H . The values are used in the actor loss
objective to apply updates to parameters θp and θc iteratively per batch for all batches.

PPO evaluates the policy deviations between new and old parameters with the policy ratio

ρ(πθnew
p

, πθold
p
) =

T∑
t=0

πθnew
p

(at|st)

πθp(at|st)
.

Lastly PPO includes the action entropy H(πθp(at|st)) into the loss formulation to encourage
exploration. The entropy per batch is formulated as

H(πθp) =
T∑
t=0

0.5 + 0.5 log(2π) + log(σ(πθp(at|st))).

The parameters θp of the policy network are adjusted for policy performance by optimizing the
loss

L = E[AGAE × ρ(πθ new
p

, πθold
p
)].

The original gradient loss is seen in many policy gradient methods, in particular TRPO. This vanilla
loss often results in overconfident updates, resulting in training instability. In PPO this loss is
clipped to prevent this instability in training as

Lc = E[min (L, clip(L, 1− ϵ, 1 + ϵ) + (ceH(πθp)))].

The parameters θc of the value function network are adjusted for improved value function estimation
by optimizing the loss

LV = cv

T∑
t

(Vθc(st)−Gt)
2.

The old parameters are cached and both new and old sets of parameters are used for update iterations
in the next batch.

This entire method is outlined in Algorithm 1.

Environment and Rewards

In the environment, the agent’s next observation is calculated using the dynamics (2) and the
current control action at and current observation st. Every new observation is used to give reward
feedback according to a reward function. The agent learns to map state observations to control
inputs that transition to states that maximize the reward. The force Ft that each thruster applies is
bounded within

[
−F̄ , F̄

]
, and the mass of the chaser m is assumed to stay constant. Thus, the

control input u is constrained such that ut = Ft/m ∈
[
−F̄ /m, F̄ /m

]
.

Because we want the chaser spacecraft to stay within an LoS region, we build that constraint into
the reward function. We denote ρt as the position vector of the chaser relative to the target at time

6

Algorithm 1: Rollout Update in PPO with GAE and Early Truncation
Input : Policy parameters θp, Value function parameters θc
for each training iteration do

Collect state-action pairs (st, at) for T time steps;
Calculate rewards rt and values Vθc(st);
Calculate advantages AGAE;
Normalize advantages AGAE;
Calculate returns as formulated in 2;
Shuffle state-action pairs, rewards, values, and advantages;
Divide shuffled data into mini-batches;
for each mini-batch do

Update policy network πθp ;
if θnew

p = None then
θp → θnew

p

end
for each state-action pair (st, at) do

Calculate old policy probability πθp(at|st);
Calculate new policy probability πθnew

p
(at|st);

Calculate surrogate loss Lc(θp);
Back Prop and Update new → θnew

p ;
end

end
Update value function network Vθc ;

end

t, β as a vector that points 800 meters out from the target’s docking port in the y direction, and ϕ
denotes the angle of the LoS cone. Then the LoS region is given as

LoS =

[
pt · β

∥pt∥∥β∥
≥ cos

(
ϕ

2

)]
∧ [y ≥ yd],

where yd is the y-position of the docking port. This LoS region is visualized in Figure 2.

Given the target/docking state xd, we define dt = xd−xt as the element wise difference between
the docking state and the current state. The reward generally captures the loss and is a function of
the chaser spacecraft’s state relative to the target/docking state and the LoS region. Thus, we define
the reward as

rt =

d⊤
t Qxdt + u⊤

t Quut − (ρ1 − ∥dt∥2)2 if not LoS and ∥dt∥2 > ρ1

d⊤
t Qxdt + u⊤

t Quut − (ρ2 − ∥dt∥2)2 if not LoS and ∥dt∥2 < ρ2

d⊤
t Qxdt + u⊤

t Quut + (ρ2 − ∥dt∥2)2 if LoS and ∥dt∥2 < ρ2

d⊤
t Qxdt + u⊤

t Quut + (ρ2 − ∥dt∥2)2 + (20ρ3 − ∥d∥2)2 if LoS and ∥dt∥2 < ρ3 ,

where Qx and Qu are diagonal weighting matrices and ρ1, ρ2, and ρ3 are scalars that define the
conditions for changing the weights of the reward function.

The environment truncates terminal or win conditions during training so as to avoid the agent
developing a policy that tries to terminate the mission early to avoid negative penalty.

7

Figure 2: Visualization of target spacecraft and LoS region. Left: Proposed LoS that extends 800
meters in the y direction. Right: Standard benchmark LoS that extends 100 meters in the y direction.

TRAINING PROCEDURE

Algorithm 1 describes how training is executed. We heavily modified the PyTorch PPO imple-
mentation from Stable-Baselines-3 for our environment. We ran multiple environment instances
with the vectored environment wrapper from Stable-Baselines-3. To handle the difference between
termination and episode truncation, we applied an additional time limit wrapper over our environ-
ment to modify the done signal as truncated if the environment had not reached its step limit. The
machine used to train the model had 16GB of system memory, AMD Ryzen 9 3900XT 12-Core Pro-
cessor CPU build on x86 architecture, and a single 24GB RTX 3090-TI NVIDIA GPU with CUDA
12 and VULKAN 1.2 compute capabilities. All environment dynamics were calculated using the
CPU on system memory, and all other calculations were done with the GPU on GPU memory.

Parallel Environments and Time Limit Handling

Since our observation and action spaces are both continuous, a single agent in this environment
will never be able to gain a representative sample size at each policy update. To improve on this,
we use multiple agents that navigate through the environment in parallel on the policy to collect 12
sets of T roll-outs. The discount and advantage calculations remain environment specific, however
afterward the roll-outs are all merged into a single roll-out. The collection of all samples in the
merged roll-out is treated as a single roll-out, which is shuffled and split into subsets of B samples,
or batches, to then compute policy updates.

In the initial stages of training, a smaller maximum environment time Te is used. The maximum
environment time Te is incrementally increased as the variance in initial states is increased. After,
the environment does not reset; instead, it continues from where it ended and the process is repeated
until T = 500 steps are taken in the environment. Then the returns and other updates are calculated.
In summary, we have Ne = 30 environments that are each sampled for T = 500 steps, so Tr =
Ne × T = 15, 000 total steps (corresponding to more than 4 hours of mission time) per roll-out.

8

We also make a distinction between terminal and truncated episode reset conditions. In the en-
vironment, we truncated the docked state and the target collision condition. The differences in the
policy update is detailed in Algorithm 2.

Algorithm 2: Truncation vs Termination Bootstrap in PPO

for each state st do
if episode is truncated then

Calculate returns Gt as in (3);
else

Calculate returns as Gt = δt + V̂ (st);
end
Backpropagate and update parameters → θc;

end

Network Architecture

The actor and critic networks are completely separate and do not share parameters. Both networks
are orthogonally initialized layers with a default standard deviation of σ =

√
2 for each layer.

Between each layer we use GeLU activation functions.20 The actor network has four layers with
widths of 130, 44, 30, and 3, respectively. The orthogonal layer that outputs the action means is
initialized with a standard deviation of σ = 0.01. The critic network has the same number of layers
as the actor network but has a much wider profile. The width of each layer is 145, 25, 5, and 1,
respectively, where the last layer is the single scalar value estimate. This is described in Table 1.

Table 1: Actor Critic Model Architectures

Actor Architecture Critic Architecture

Layer Neurons (Width) # of Parameters Neurons (Width) # of Parameters

Input (130) 910 (145) 1015

Hidden Layer 1 (44) Activation: GeLU 5764 (25) Activation: GeLU 3650

Hidden Layer 2 (30) Activation: GeLU 1350 (5) Activation: GeLU 130

Output Layer (3) 93 (1) 6

Total Trainable Params - 12918 - 12918

Normalization

The shape of the observation, scale of observation values, episode duration, and scale of rewards
all affect the network output and loss. Input normalization is a common pre-processing step in
other machine learning applications that can improve training efficiency.21 In our environment, the
possibly large differences in scaling of rewards and observations at different stages of the mission
made normalization important.

We define ot as the current observation, and O as the set of all observations seen in training.
The mean µ and standard deviation σ are running calculations based on the training duration. The

9

normalized observation ôt is calculated as

ôt =
ot − µ(O)

σ2(O)
∈ [−ō, ō]

and is clipped such that ō denotes the maximum value observation ot can take.

The advantage AGAE is normalized per batch, such that the normalized advantage ÂB is given as

ÂB =
AGAE − µ(A)

σ(A)
,

where A is the set of all advantages from previous sampling windows in the batch. We calculate the
normalized returns over every sampling window as

ĜT =

∑T
t=0Gt − µ(G)

σ2(G)
,

where G is the set of all returns from previous sampling windows.

SIMULATION RESULTS

In this section we present results from training a PPO algorithm for the spacecraft autonomous
rendezvous and docking problem, as described above*. The hyper parameter values chosen are given
in Table 2, system parameter values are given in Table 3, and results from 100 different runs using
the trained model with randomly varying initial positions and velocities are shown in Figures 3– 5
and Tables 4–5.

Table 2: Hyper parameters.

Parameter Description Value

T Sampling Window 500
Ne Parallel Environments 30
Tr Time Steps per Roll-out Ne × T = 15000
B Batch Size 1000
Te Max Environment Time 1500
ηa Actor Learning rate 0.0003
ηc Critic Learning rate 0.0005
γ Discount factor 0.998
λ GAE lambda 0.98
NR Recycles per Roll-out 20
ϵ Clip range 0.20
ce Entropy coefficient 0.0002
cv Value coefficient 0.5
∇ Max Normal Gradient 0.002

*Code is available as a pip package here: � https://github.com/Vince-C156/PLANNING-
AUTONOMOUS-SPACECRAFT-RENDEZVOUS-AND-DOCKING-TRAJECTORIES-VIA-REINFORCEMENT-
LEARNING

10

https://github.com/Vince-C156/PLANNING-AUTONOMOUS-SPACECRAFT-RENDEZVOUS-AND-DOCKING-TRAJECTORIES-VIA-REINFORCEMENT-LEARNING
https://github.com/Vince-C156/PLANNING-AUTONOMOUS-SPACECRAFT-RENDEZVOUS-AND-DOCKING-TRAJECTORIES-VIA-REINFORCEMENT-LEARNING
https://github.com/Vince-C156/PLANNING-AUTONOMOUS-SPACECRAFT-RENDEZVOUS-AND-DOCKING-TRAJECTORIES-VIA-REINFORCEMENT-LEARNING

Table 3: System, environment, and reward parameters.

Parameter Description Value Units

F̄ Max thrust force 10 N
m Mass of chaser spacecraft 500 kg
ū Max control input, i.e., F̄ /m 0.02 m/s2

T Environment Time Limit 1500 s
µ Earth’s gravitational constant 3.986× 1014 m3/s2

r Earth’s radius 6,178,317 m
R Geostationary orbit semi-major axis 35.786× 106 + r m
h Sampling time step 1 s
ϕ Angle of cone defining LoS region 60 deg
ρ1 Reward function condition 1 800 m
ρ2 Reward function condition 2 350 m
ρ3 Reward function condition 3 5 m
ō Maximum normalized observation value 100 -
Qx Reward weighting matrix diag{.35 .15 .35 0.015 0.35 0.015} -
Qu Reward weighting matrix diag{10.5 10.5 10.5} -

For these results, we progressively trained an agent with initial positions uniformly sampled from
x ∈ [−100, 100] m, y ∈ [400, 600] m, and z ∈ [−5, 5] m. We took the weights from each set
of training and incrementally increased the agent’s initial positions to be uniformly sampled from
x ∈ [−400, 400] m, y ∈ [400, 1200] m, and z ∈ [−400, 400] m. For all training rounds the
initial velocities (ẋ ẏ ż) were each uniformly sampled from [−2, 1] m/s. The docking point is at
the position (xd, yd, zd) = (0, 60, 0) m, which is the target’s location with an extension in the y
direction. Then the target/docking state is given as xd = [0 60 0 0 0 0]⊤.

Figure 3 shows 100 trajectories produced by the trained model with random initial positions that
begin up to 1200 meters from the target. The majority of these trajectories result in the chaser
spacecraft successfully achieving rendezvous with the target while staying within the LoS region.
Once within a few meters of the docking port, additional sensing may be available, and a local
controller could be used to successfully complete the docking maneuver. Figure 4a shows the
distribution of initial positions varying from x ∈ [−400, 400], y ∈ [400, 1200] and z ∈ [−400, 400].
Figure 4b shows that the terminal positions are within a few meters of the docking port.

Figure 5 shows a single trajectory produced by the trained model. Figures 5a and 5b show that the
trajectory stays within the proposed extended LoS and the standard benchmark LoS, respectively. It
is apparent that the trained model considered the LoS region earlier than if the standard LoS were
used, which enabled a smooth trajectory as the chaser approached the target. Figure 5c further
shows this, as the x and z positions begin to converge when the agent is approximately 400 meters
from the target in the y direction. Figure 5d shows that the trained model is careful to both stay
within the LoS region and to not collide with the target since ẏ reaches zero around 310 seconds
and then is increased slightly only once ẋ and ż (and the corresponding positions) converge to zero.

Statistics for the terminal states are given in Table 4 and generally show that the trained model
achieves rendezvous by producing trajectories with states that terminate close to the docking state.
These results show a bias in the terminal x positions in the negative direction, with a mean of -
6.48 meters and large standard deviation of 13.5 meters even though the median is 0.601 meters.

11

(a) 3D trajectories with proposed LoS (b) 3D trajectories with standard LoS

0 50 100 150 200 250 300 350 400 450
Time [s]

−400

−200

0

200

400

600

800

1000

1200

Po
sit

io
n
[m

]

x
y
z

(c) Position states for 100 trajectories

0 50 100 150 200 250 300 350 400 450
Time [s]

−5

−4

−3

−2

−1

0

1

2

3

Ve
lo
cit

y
[m

/s
]

xdot
ydot
zdot

(d) Velocity states for 100 trajectories

Figure 3: 100 rendezvous maneuver trajectories produced by the trained model with random initial
positions and velocities

This may be due to a large fraction of the 3D trajectories shown in Figure 3a, with initial positions
shown in Figure 4a, starting both close to the target and with significant initial negative x position.
Figure 4b also shows this with two main clusters for the terminal positions: one with −x deviation
and one without. This may imply that the cause of the negative x bias is due to a particular set of
conditions rather than being intrinsic to the policy. Table 4 also shows that the terminal ẋ and ż
averages of 0.0264 and 0.0142 m/s, respectively, are considerably lower than the average terminal
ẏ at −0.39 m/s. This shows the model’s tendency to prioritize aligning the chaser spacecraft within
the center of the LoS region before finally approaching and docking with the target in the y direction,
thereby planning both phases 2 and 3 of the mission as a single trajectory.

Table 5 shows episode and environment statistics, including episode length (i.e., mission time),
total fuel consumed, and computation time per step. Of the 100 mission times, 80 are between 386.9
and 576.0 seconds. These mission times are possible due to significant fuel use with continuous

12

X [m]

−400−300−200−100 0 100 200 300 400

Y [
m]

400
500

600
700
800
900
1000
1100
1200

Z
[m

]

−400
−300
−200
−100
0
100
200
300
400

(a) Initial positions

X [m]

−40
−20

0
20

40

Y [m]

20
40

60
80

100

Z [m
]

−40

−20

0

20

40

(b) Terminal positions. The red dot at (0, 60, 0) me-
ters is the docking port.

Figure 4: Initial and terminal states for the 100 rendezvous maneuver trajectories shown in Figure 3

Table 4: Terminal state statistics for the 100 trajectories shown in Figure 3

Variable Mean Standard Deviation Median Units

x −6.48 13.5 0.601 m
y 63.9 3.54 66.21 m
z 1.62 8.93 4.56 m
ẋ 0.0264 0.184 0.0372 m/s
ẏ −0.390 0.473 −0.188 m/s
ż 0.0142 0.140 0.0254 m/s

thrust. The computation time is constant over all time steps.

Table 5: Episode/mission and environment statistics for the 100 trajectories shown in Figure 3

Data Mean Standard Deviation Median Units

Episode Length (mission time) 481.4 73.78 505.5 s
Episode Fuel 16.64 2.56 17.48 m/s2

Agent Step Run-Time (CPU) 373.5 0 373.5 ms

DISCUSSION ON IMPLEMENTATION

Normalization and network parameter initialization were essential to the training process. With-
out imitation learning, we were able to achieve our results by iteratively training the policy. Attempts
to train the policy for long episodes and significant distances from the target yielded no success. We
instead trained an initial policy on closer and shorter missions. The initial parameters converged to
reasonable behavior, and we took the same weights from the policy and value networks and retrained

13

(a) Single trajectory with proposed LoS (b) Single trajectory with standard LoS

0 50 100 150 200 250 300 350 400
Time [s]

−400

−200

0

200

400

600

800

1000

1200

Po
sit

io
n
[m

]

Sample of Single Trajector Position Components
x

z

(c) Position states for single trajectory

0 50 100 150 200 250 300 350 400
Time [s]

−4

−2

0

2

4

Ve
lo
cit

[m

/s
]

Sample of Single Trajector Velocit Components
xdot
 dot
zdot

(d) Velocity states for single trajectory

Figure 5: Single rendezvous maneuver trajectory produced by the trained model

them on initial conditions with larger variance. We were also able to modify the reward function
and parameters between training sections as long as the changes were small in magnitude. Major
modifications to the reward or discount would make it difficult for the value function to converge.

Throughout the training process, we found that several parameters and implementation details
were especially important. Initial results showed inconsistencies in the PPO loss and ability for the
reward to converge. We originally chose the PPO algorithm to minimize the training inconsisten-
cies commonly seen with other policy gradient methods, however, tuning the PPO algorithm was
challenging.

• Tuning the sampling window T along with the number of parallel environments Ne was
important. Due to the discounted reward formulation, the number of time steps per roll-out
Tr cannot be too large because reward feedback near the end of the roll-out would not be
accounted for.

14

• Through experimentation, we found that the discount factor γ had to be set relatively high
(e.g., γ = 0.998) to weigh rewards throughout the entire sampling window.

• Tuning the Generalized State Advantage AGAE (i.e., tuning the value of λ) was important to
decrease overall variance in the feedback. First, we applied a high discount factor γ without
using a Generalized State Advantage. This resulted in instabilities in training, as too high of
a discount factor may cause the agent to over-fit to state trajectories that are unlikely to occur.

• Heavy normalization was important. Since our mission space is continuous in the observation
and action spaces, heavy normalization is needed to handle the magnitude of the inputs before
the forward pass of the neural network.

• Lastly, use of Ne parallel unique environments for each roll-out update was important. In or-
der to achieve a representative sample size of the mission before updating the policy, multiple
parallel agents were needed to sample the space.

CONCLUSION AND FUTURE WORK

We developed a Proximal Policy Optimization (PPO) method of Reinforcement Learning to com-
pute safe and efficient trajectories for a 3-DoF chaser spacecraft performing an autonomous ren-
dezvous and docking mission with an un-actuated target spacecraft on orbit. The resulting trained
model produces successful rendezvous trajectories starting from up to 1200 meters away from the
target while keeping the chaser spacecraft within an extended line-of-sight (LoS) region relative to
the target. This extended LoS region proved to be an effective formulation to nearly guarantee that
the chaser spacecraft satisfies the nonlinear LoS constraint as it approaches the target spacecraft by
incentivizing early alignment of the chaser with the target in the x and z directions. Additionally,
the trained model demonstrates robustness by generating successful rendezvous trajectories given
large variations in initial positions (up to a variation of 800 meters in each direction) and veloci-
ties (up to a variation of 3 meters per second in each direction). The results from 100 trajectories
produced by the trained model show convergence of the chaser’s position and velocity to close to
the target’s state. Moreover, the average mission time, fuel consumed, and computation time were
reported. Importantly, these results show the viability of using a reinforcement learning-based con-
trol policy for this problem with nonlinear constraints and discontinuities in phase transitions while
maintaining reasonable computation time.

There are numerous directions for future work. Phase 1 of an Autonomous Rendezvous, Prox-
imity Operations, and Docking (ARPOD) mission could be included, where the full state is only
partially observable. Sensor and actuation errors can be incorporated to test the method’s ability to
develop models that are robust to these types of errors. Modifying PPO with Long Short Term Mem-
ory (LSTM) networks has been demonstrated to converge on optimal Partially Observable Markov
Decision Policies, and future work in this direction would be interesting. Additionally, imitation
learning can be applied on real world data from past flights or simulated controller performance
to initialize the policy before applying training. This would alleviate problems commonly associ-
ated with model free reinforcement learning such as premature convergence and unstable training
by initializing the policy closer to the global minimum. Another opportunity for future work is to
re-design the reward formulation. Our rewards were dense with feedback at every step. A sparser
reward formulated at every sub-goal of the mission may be more computationally efficient and result
in more flexibility in initialization of the agent. Lastly, obstacle avoidance implementations may be
considered since PPO has been demonstrated to be effective in complex and dynamic environments.

15

Finally, we tried to detail our most significant experiences learned in the process of training a
PPO algorithm for this problem. It is difficult to make general rules or conventions for success in
reinforcement learning since many aspects must be carefully tailored for specific use-cases. We
found the study from Google Brain,21 that bench-marked several combinations of parameters, envi-
ronments, and models, to be a helpful resource.

ACKNOWLEDGEMENT

This work was supported by UCI’s Undergraduate Research Opportunities Program (UROP) and
the Air Force Office of Scientific Research (AFOSR) through the Air Force Research Laboratory
(AFRL) Summer Faculty Fellowship Program.

REFERENCES
[1] D. Malyuta, Y. Yu, P. Elango, and B. Açıkmeşe, “Advances in trajectory optimization for space vehicle control,”

Annual Reviews in Control, Vol. 52, 2021, pp. 282–315.
[2] I. Garcia and J. P. How, “Trajectory optimization for satellite reconfiguration maneuvers with position and attitude

constraints,” Proceedings of the 2005, American Control Conference, 2005., IEEE, 2005, pp. 889–894.
[3] E. N. Hartley, “A tutorial on model predictive control for spacecraft rendezvous,” 2015 European Control Confer-

ence (ECC), IEEE, 2015, pp. 1355–1361.
[4] A. A. Soderlund, S. Phillips, A. Zaman, and C. D. Petersen, “Autonomous Satellite Rendezvous and Proximity

Operations via Geometric Control Methods,” AIAA Scitech 2021 Forum, 2021, p. 0075.
[5] A. Weiss, M. Baldwin, R. S. Erwin, and I. Kolmanovsky, “Model predictive control for spacecraft rendezvous and

docking: Strategies for handling constraints and case studies,” IEEE Transactions on Control Systems Technology,
Vol. 23, No. 4, 2015, pp. 1638–1647.

[6] C. Jewison, R. S. Erwin, and A. Saenz-Otero, “Model predictive control with ellipsoid obstacle constraints for
spacecraft rendezvous,” IFAC-PapersOnLine, Vol. 48, No. 9, 2015, pp. 257–262.

[7] M. V. Paris, “Safe ARPOD for under-actuated CubeSat via reinforcement learning,” MA thesis. Politecnico di
Milano, 2021.

[8] K. Hovell and S. Ulrich, “On deep reinforcement learning for spacecraft guidance,” AIAA Scitech 2020 Forum,
2020, p. 1600.

[9] K. Dunlap, M. Mote, K. Delsing, and K. L. Hobbs, “Run time assured reinforcement learning for safe satellite
docking,” Journal of Aerospace Information Systems, 2022, pp. 1–12.

[10] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,” arXiv
preprint arXiv:1707.06347, 2017.

[11] L. Federici, B. Benedikter, and A. Zavoli, “Machine learning techniques for autonomous spacecraft guidance during
proximity operations,” AIAA Scitech 2021 Forum, 2021, p. 0668.

[12] J. Broida and R. Linares, “Spacecraft rendezvous guidance in cluttered environments via reinforcement learning,”
29th AAS/AIAA Space Flight Mechanics Meeting, American Astronautical Society, 2019, pp. 1–15.

[13] C. E. Oestreich, R. Linares, and R. Gondhalekar, “Autonomous six-degree-of-freedom spacecraft docking with ro-
tating targets via reinforcement learning,” Journal of Aerospace Information Systems, Vol. 18, No. 7, 2021, pp. 417–
428.

[14] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Debiak, C. Dennison, D. Farhi, Q. Fischer, S. Hashme, C. Hesse,
et al., “Dota 2 with large scale deep reinforcement learning,” arXiv preprint arXiv:1912.06680, 2019.

[15] C. Jewison and R. S. Erwin, “A spacecraft benchmark problem for hybrid control and estimation,” 2016 IEEE 55th
Conference on Decision and Control (CDC), IEEE, 2016, pp. 3300–3305.

[16] B. Wie, Space vehicle dynamics and control. AIAA, 1998.
[17] G. W. Hill, “Researches in the lunar theory,” American journal of Mathematics, Vol. 1, No. 1, 1878, pp. 5–26.
[18] W. Clohessy and R. Wiltshire, “Terminal guidance system for satellite rendezvous,” Journal of the Aerospace Sci-

ences, Vol. 27, No. 9, 1960, pp. 653–658.
[19] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, “Trust Region Policy Optimization,” CoRR,

Vol. abs/1502.05477, 2015.
[20] D. Hendrycks and K. Gimpel, “Gaussian Error Linear Units (GELUs),” 2020.
[21] M. Andrychowicz, A. Raichuk, P. Stanczyk, M. Orsini, S. Girgin, R. Marinier, L. Hussenot, M. Geist, O. Pietquin,

M. Michalski, S. Gelly, and O. Bachem, “What Matters In On-Policy Reinforcement Learning? A Large-Scale
Empirical Study,” CoRR, Vol. abs/2006.05990, 2020.

16

	Introduction
	Problem Formulation
	Proximal Policy Optimization
	Actor Critic Method
	Environment and Rewards

	Training Procedure
	Parallel Environments and Time Limit Handling
	Network Architecture
	Normalization

	Simulation Results
	Discussion on Implementation
	Conclusion and Future Work
	Acknowledgement

