
MAE 106 Controller Design Assignment Instructions 
 

There is a video introduction to this assignment from Class 20 on the Week 7 page. 

This assignment involves the design of a PID feedback controller to stabilize a simulated cart 
and pendulum system. Each student will submit this assignment individually. 

Start by copying these two Python Jupyter Notebooks to your Google Drive: 

• https://drive.google.com/file/d/1cTNocjVn7TddnrIovd_oKTLHP2ugmUvL/view?usp=
sharing 

• https://colab.research.google.com/drive/1qDmukEEEsQUqQ29bEKz5cO_VJzS0Rfxp?
usp=sharing  

If your browser gives you the option, open these files in Google Colaboratory. Open these 
.ipynb files from your Google Drive in the browser (Google Chrome recommended). This will 
open them using Google Colaboratory, and you can do all of your edits and running code 
directly in the browser without needing any additional software.  

The first notebook is an introduction to linearization, specifically linearizing the nonlinear 
inverted pendulum on a cart system we will design a controller for. There is nothing to turn in 
after working through this first notebook. 

The second notebook is where you will design and simulate a PID controller for the inverted 
pendulum on a cart system. Please follow the instructions in the notebook and submit a report 
with your answers, showing all work. You can use this report template, and then upload your 
completed document as a pdf. 
 
Post any questions to Ed Discussion! 
 
 
 
 
 
 
 
 
 
 
 
 
[Below in this PDF are printed versions of the interactive Python Jupyter Notebooks linked 
above that the students work through: First the introduction to linearization notebook and then 
the PID controller design notebook.] 
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This initial code installs and imports necessary packages to run the program.

GOOGLE_COLAB = True

if not GOOGLE_COLAB:
    %cd ../
else:
    !pip install git+https://github.com/rland93/pendsim.git

from pendsim import sim, controller, viz, utils
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from IPython.display import HTML

This notebook explores linearization: what does it mean to linearize a nonlinear system?

Linearization Notebook

For this purpose, we explore an inverted pendulum on a cart system:


Imagine the rectangle is a cart that can move horizontally, and the pendulum is free to rotate about
the point that it is attached to the cart. For simplicity, let's neglect friction and inertia. This system
can be modeled using nonlinear equations of motion.

The system has the following parameters:

 = mass of the cart
 = mass on the end of the pendulum

 = length of the pendulum

𝑀

𝑚

𝑙
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 = gravity

The system's states that vary with time are:

 = cart position
 = cart velocity
 = pendulum angle (where  corresponds to the upright position)

 = pendulum angular velocity

And some horizontal force or "push" of the cart is given by .
Then the equations of motion for this
system are:

This is a system of nonlinear 2nd-order differential equations in terms of  and . It is highly
nonlinear: we have several sines and cosines and some quadratic terms.

We can easily produce, however, a simplified, linear approximation of the system that behaves
similar to the nonlinear system in a neighborhood around a given point.

𝑔

𝑥

𝑥˙

𝜃 𝜃 = 0

𝜃˙

𝑢

(𝑀 + 𝑚) + 𝑚𝑙 cos 𝜃 − 𝑚𝑙 sin 𝜃 = 𝑢𝑥̈ 𝜃̈ 𝜃˙
2

𝑚 + 𝑚𝑔𝑙 sin 𝜃 = −𝑚𝑙 cos 𝜃𝑙2 𝜃̈ 𝑥̈

𝑥 𝜃

To do so, we will use techniques familiar to us from calculus.

Let's take a nonlinear function, , as an example. This looks squiggly:𝑓(𝑥) = 𝑠𝑖𝑛(𝑥)

x = np.linspace(0,8,500)

y = np.sin(x)

plt.plot(x, y)


We know from calculus that we can take the derivative of this function and write down its Taylor
Series around any point  that we want. Let's choose the point .

To find the Taylor Series about , we evaluate the function's derivative at the point of interest
and use that to find the series terms:

Now, this series continues forever, and it's also nonlinear. As we continue to add terms to the
summation, it approaches our original function .

𝑎 𝑎 = 1

𝑎 = 1

𝑓(𝑎) + (𝑥 − 𝑎) + (𝑥 − 𝑎 + (𝑥 − 𝑎 . . .
(𝑎)𝑓 ′

1!

(𝑎)𝑓″

2!
)2

(𝑎)𝑓‴

3!
)3

𝑓(𝑥) = 𝑠𝑖𝑛(𝑥)

# helper function for drawing taylor series

def taylor_plot(a, x):

    a = 1

    y = np.sin(x)

    y1 = np.repeat(np.sin(a), y.shape)

    y2 = y1 + np.cos(a) * (x-a)
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    y3 = y2 + np.sin(a) * (1/2.) * (x-a)**2

    y4 = y3 + np.cos(a) * (1/6.) * (x-a)**3

    y5 = y4 + np.sin(a) * (1/24.) * (x-a)**2

    plt.axvline(a, linestyle=":", color="#555")

    plt.plot(x, y, 'k')

    plt.plot(x, y1, color="#333")

    plt.plot(x, y2, color="#666")

    plt.plot(x, y3, color="#888")

    plt.plot(x, y4, color="#999")

    plt.plot(x, y4, color="#aaa")


We can look at this with our function :𝑦 = 𝑠𝑖𝑛(𝑥)

x = np.linspace(0,8,500)

taylor_plot(1, x)


We can see that our Taylor Series approximation diverges a lot from the nonlinear function as we
get farther away from ; let's look a little bit closer:𝑎

x = np.linspace(0, 2, 500)

taylor_plot(1, x)


Here, we notice a few things. First, that the 0th order Taylor Series approximation isn't much use; it's
just the function output at the point . Second, as we add more terms, we achieve a diminishing
return as far as how well the function gets approximated. The 2nd, 3rd, and 4th order terms are all
very close to the 1st order term as far as accuracy, in a region close enough to the point. So let's
look at just the first-order approximation:

𝑎

a = 1

# the actual function

y = np.sin(x)

# 1st order taylor approx.

y1 = np.sin(a) + np.cos(a) * (x - a)


plt.plot(x, y, 'k')

plt.plot(x, y1, '#888')


This is the power of the linear approximation. For a function , if we can find its derivative, we
can produce a "pretty good" approximation for it around any point we want. Most importantly, that
first-order approximation is a linear approximation. We notice our y1  function above

𝑓(𝑥)

= sin(𝑎) + cos(𝑎)(𝑥 − 𝑎)𝑦1
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has the same form as the familiar line equation

We can extend this line of thinking to the original pendulum/cart system; the linearization method
here works for any function, no matter how complex, so long as it is differentiable. It's a little bit of
effort to take the derivative of the vector-valued system of ODEs we have above, so let's review it
briefly here.

= 𝑥 +𝑦1 𝑐1 𝑐2

We represent the pendulum state as a vector: . Here, bold  represents the entire
system, not just the cart position. With some rearranging, the original equations of motion can be
written in terms of  and . The equations of motion can be written in vector form:

In this form, the derivative of the function  is the Jacobian matrix of partial derivatives:

Then, the first-order Taylor Series approximation of the function is equal to

This approximation is often written in "state-space" form as

𝐱 = [𝑥, , 𝜃, ]𝑥˙ 𝜃˙ 𝐱

𝑥̈ 𝜃̈

[ , , , ] = 𝑓([𝑥, , 𝜃, ])𝑥˙ 𝑥̈ 𝜃˙ 𝜃̈ 𝑥˙ 𝜃˙

= 𝑓(𝐱)𝐱˙

𝑓

𝑓(𝐱)
∂𝐱

∂𝑡

(𝑥) = 𝑓(𝑎) + 𝑓(𝑎)(𝑥 − 𝑎)𝑓𝑙𝑖𝑛𝑒𝑎𝑟

∂𝐱

∂𝑡

= 𝐴𝐱 + 𝐵𝐮𝐱˙

Now we can take steps towards our goal of finding a linear approximation for our nonlinear system.
For a given state , we want to find matrices  and  by computing the partial derivatives 

 and rearranging the terms of the first-order Taylor Series approximation.

Which state will we linearize about?

In general, we might choose and equilibrium point (or the set point of a controller) for the
linearization. Then, a well-designed controller will keep the state within the region surrounding the
setpoint, and then, the linearized system model will accurately represent of the system state.

We choose , which corresponds to the upright position and zero velocity.

After finding the derivative of our vector-valued function and rearranging some terms, we arrive at
the linearized model of our original equation.

𝐱 = 𝑎 𝐴 𝐵

𝑓(𝑎)∂𝐱

∂𝑡

𝑎 = [0, 0, 0, 0]
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𝐴 = 𝐵 =

⎡

⎣

⎢
⎢
⎢
⎢
⎢

0

0

0

0

1

0

0

0

0
𝑚𝑔

𝑀

0

𝑔(𝑀+𝑚)

𝑀𝑙

0

0

1

0

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢

0

1

𝑀

0

1

𝑀𝑙

⎤

⎦

⎥
⎥
⎥
⎥
⎥

How good is the linear approximation? In order to see, we can compare the true state with the state
that is predicted by the linear model. The following code gives us the linear prediction.

class Linearization_Measurement(controller.Controller):

    def __init__(self, pend, dt) -> None:

        self.pend = pend

        self.A, self.B = self.get_linear_sys(pend.jacA, pend.jacB, dt)

        self.x_1 = np.array([0,0,0.01,0])


    def policy(self, state: np.ndarray, dt: float):

        # get error from previous state

        self.err = state - self.x_1
        

        

        # predict next state

        self.x_1 = self.A @ state + self.B @ np.array([0])

        action = 0

        

        # store variables

        data = {}

        data.update(utils.array_to_kv("x_1", controller.LABELS, self.x_1))

        data.update(utils.array_to_kv("pred_err", controller.LABELS, self.err))

        return action, data


Now, let's set up a simulation of the nonlinear system to investigate how well the linear model
predicts the state.

dt, t_final = 0.01, 10

# start slightly tilted so that the pendulum will fall over

pend = sim.Pendulum(2, 2, 2, initial_state=np.array([0,0,0.01,0]))

cont = Linearization_Measurement(pend, dt)

simu = sim.Simulation(dt, t_final, lambda t: 0)

results = simu.simulate(pend, cont)


We can see how good our linearization is by looking at the difference between what was predicted
to happen by our linearized model and what actually happened in the simulation.
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We should notice two things. First, that at the linearization point, the difference should be very
small, maybe zero. This makes sense from our plots of  above. At the point , the
linearization produces exactly the function output.

Second, we should notice that near the point , the linearization produces a pretty good
approximation of the underlying function. Remember, we might use this technique for functions that
are far more complex than  -- like our pendulum dynamics! And, given that we are only doing
a first-order approximation, far away from the point around which we linearized our model, the linear
function might not be so great an approximation.

Now we can look at the error between what the linear model predicted and what the real state was.
Let's do that graphically.

𝑠𝑖𝑛(𝑥) 𝑎

𝑎

𝑠𝑖𝑛(𝑥)

fig, ax = plt.subplots(nrows=2, sharex=True)

ax[0].plot(results[("pred_err", "t")].abs())

ax[0].set_title("Prediction error over time")

ax[0].set_ylabel("Error (rad)")

ax[1].plot(results[("state", "t")])

ax[1].set_title("Theta over time")

ax[1].set_ylabel("Theta (rad)")

ax[1].set_xlabel("Time (s)")


From the graph, we can see pretty clearly that our approximation is good near the linearization point
and is less accurate as we move away from it. The linearization was performed where . In our
simulation, this occurred at s and at approximately s.

On top, we have the difference between the linear model and the actual system. On the bottom, we
have the system state.

Just like our Taylor Series for  above -- as we get further away from the linearization point, our
1st-order model becomes less accurate.

𝜃 = 0

𝑡 = 0 𝑡 = 10

sin(𝑥)

Finally, let's look at one more plot. Here, we plot  on the horizontal axis and the prediction error on
the vertical axis.

𝜃

fig, ax = plt.subplots()

ax.plot(results[("state", "t")].shift(1), results[("pred_err", "t")].abs())

ax.set_title(r"Prediction error ($\theta$) as a function of system state ($\theta$)")

ax.set_xlabel(r"$\theta$ (rad)")

ax.set_ylabel(r"Absolute Error (rad)")


This graph shows the same result. Near the linearization point of , the error is . As we get
farther away from , our approximation is less accurate.

𝜃 = 0 0

𝜃 = 0
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So, if we design a controller that keeps the value of  near the desired point , our linearized system
model will be a good approximation of the nonlinear system!

𝜃 0
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This initial code installs and imports necessary packages to run the program.

GOOGLE_COLAB = True


if not GOOGLE_COLAB:
    %cd ../
else:
    !pip install git+https://github.com/rland93/pendsim.git

from pendsim import sim, controller, viz

import numpy as np

import matplotlib.pyplot as plt

from IPython.display import HTML


PID, or proportional-integral-derivative, control is a model-free feedback policy which uses an error
signal and tunable gains to compute a control action that produces a desired system response.

The block diagram of the PID system in the time domain is shown above. Given the error signal ,
we tune the three gains,  and , to generate the control signal, . The control signal is an
input to the physical system (the plant / process), which finally produces some output . (Graphic
is sourced from Wikipedia).

For more information about PID control, see Feedback Systems:
An Introduction for Scientists and
Engineers, Ch 10, or for a less technical introduction, Wikipedia.

PID Notebook

𝑒(𝑡)

,𝐾𝑝 𝐾𝑖 𝐾𝑑 𝑢(𝑡)

𝑦(𝑡)

Part 1: System Analysis

https://people.duke.edu/~hpgavin/SystemID/References/Astrom-Feedback-2006.pdf
https://en.wikipedia.org/wiki/PID_controller
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Consider the inverted pendulum on a cart system. The cart can move horizontally, and the
pendulum is free to rotate about the point that it is attached to the cart. For simplicity, let's neglect
friction and inertia.

The system has the following parameters:

 = mass of the cart
 = mass on the end of the pendulum

 = length of the pendulum
 = gravity

The system's states that vary with time are:

 = cart position
 = cart velocity
 = pendulum angle (where  corresponds to the upright position)
 = pendulum angular velocity

And some horizontal force or "push" of the cart is given by .

The linearized system can be modeled in the time domain as

Written out, this is


Assuming we can measure the angle , our goal is to design a proportional-derivative (PD)
controller that can stabilize an inverted pendulum on a cart in the upright position (i.e., ) when
it is released from rest at a certain angle different from the upright position (i.e., ).

Therefore, we will consider a control law of the form

where  is the error signal that is equal to the difference between the desired
angle (  in the upright position) and the measured angle .

In the code below, define your system. Choose values for the mass of the cart (choose something
between 0.1kg and 10kg), the mass on the end of the pendulum (choose something between 0.1kg
and 10kg), and the length of the pendulum (choose something between 0.1 and 3 meters).

Include the following in your report:

𝑀

𝑚

𝑙

𝑔

𝑥

𝑥˙

𝜃 𝜃 = 0

𝜃˙

𝑢

= 𝐴𝐱 + 𝐵𝑢𝐱̇

= + 𝑢

⎡

⎣

⎢
⎢
⎢
⎢

𝑥˙

𝑥̈

𝜃˙

𝜃̈

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢

0

0

0

0

1

0

0

0

0
𝑚𝑔

𝑀

0

𝑔(𝑀+𝑚)

𝑀𝑙

0

0

1

0

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

𝑥

𝑥˙

𝜃

𝜃˙

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢

0

1

𝑀

0

1

𝑀𝑙

⎤

⎦

⎥
⎥
⎥
⎥
⎥

𝜃

𝜃 = 0

𝜃 ≠ 0

𝑢(𝑡) = 𝑒(𝑡) + (𝑡)𝑘𝑝 𝑘𝑑𝑒˙

𝑒(𝑡) = (𝑡) − 𝜃(𝑡)𝜃𝑑

= 0𝜃𝑑 𝜃
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Write down the closed-loop transfer function relating the output  to the input .
Write down the poles of the closed-loop system as a function of the control gains and model
parameters.
What is the condition on  such that the poles are complex (i.e., for what values of  will the
poles have non-zero imaginary parts)?
Write down the parameter values you chose.

𝜃 𝜃𝑑

𝑘𝑝 𝑘𝑝

pend = sim.Pendulum(

    1.0, # Pendulum base mass [kg] - CHANGE THIS VALUE

    1.0, # Pendulum ball mass [kg] - CHANGE THIS VALUE

    1.0, # Pendulum length [m] - CHANGE THIS VALUE

    

    # state = [x [m], xdot [m/s], theta [rad], thetadot [rad/s]]

    initial_state = np.array([0.0, 0.0, 0.1, 0.0]) 

    # MAY CHANGE THIRD VALUE IN THIS ARRAY TO A DIFFERENT SMALL VALUE.

    # YOU WILL CHANGE THIS VALUE AGAIN AFTER TUNING A PD CONTROLLER.

)


dt, t_final = 0.01, 10 # time step and simulation time [s]

# define the force that is applied to the cart [N] - don't worry about this function

def force_func(t):

    return 0 

simu10 = sim.Simulation(dt, t_final, force_func)


A PID controller has three gains, that we call kp , ki , kd  here. These are also called the
proportional, integral, and derivative gains, respectively.

To start, set all the gains equal to zero. This zero-gain controller fails to stabilize the pendulum
system because all of the coefficients in front of the actuation are 0! So, with all gains equal to 0,
the controller takes no action at all. Therefore,  increases, and the pendulum simply falls over. The
plot shows  changing from 0 to  radians as the pendulum swings around and around since there
is no friction or inertia.

Part 2: Controller Design

𝜃

𝜃 2𝜋

kp, ki, kd = 0.0, 0.0, 0.0 # control gain values

cont = controller.PID((kp, ki, kd))
results = simu10.simulate(pend, cont)

fig1, ax1 = plt.subplots()

ax1.plot(results[('state','t')], 'k--', label='theta')


plt.show()
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100%|██████████| 1000/1000 [00:01<00:00, 926.39it/s]


And for a visual confirmation of our suspicion, we visualize the virtual experiment:

visu = viz.Visualizer(results, pend, dt)
ani = visu.animate()
HTML(ani.to_html5_video())

To tune the PID controller, start by changing the proportional gain, called kp . Start at zero and
slowly increase it to see what happens. Let's create several controllers, increasing the gain  for
each controller. Feel free to change this in the code below. Our ultimate goal is to stabilize the
pendulum system in the upright position, so that means we want  to settle at 0 radians.

𝑘𝑝

𝜃

# starting gain

kp = 0.0

# number of times to increase the gain

n = 32

# amount to increase by

increase_by = 1.5 # YOU CAN CHANGE THIS

# empty lists

conts = []
pends = [pend] * n

gains = []
for _ in range(n):

    # increase the gain

    kp += increase_by

    # set ki, kd to 0

    pid = kp, 0.0, 0.0

    conts.append(controller.PID(pid))

    gains.append(kp)
# simulate each controller

all_results = simu10.simulate_multiple(pends, conts)
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Now, let's simulate the system and plot the values of  for each gain.𝜃

nrows, ncols = 8, 4
fig1, ax1 = plt.subplots(nrows=nrows, ncols=ncols, sharex=True, sharey=True, figsize=(
axn, ax_idxs = 0, {}
# index helper map for plots
for i in range(nrows):
    for j in range(ncols):
        ax_idxs[axn] = (i, j)
        axn += 1
# create figures and set the title as the gain
for g, (idx, res), (axi, axj) in zip(gains, all_results.groupby(level=0), ax_idxs.valu
    res.index = res.index.droplevel(0)
    ax1[axi, axj].plot(res[('state', 't')])
    ax1[axi, axj].set_title('gain=' + str(g))
# label figures
for i in range(nrows):
    ax1[i, 0].set_ylabel('theta (rad)')
for j in range(ncols):
    ax1[-1, j].set_xlabel('time (s)')
plt.show()

We can see that the controller keeps the pendulum's angle close to zero with a large enough . Set 
 to this value in the code below.

These results should make intuitive sense with a bit of control systems knowledge: increasing the
proportional gain makes the system respond faster and also increases the frequency of oscillation.

The pendulum is (somewhat) stable around , but we still have a pesky oscillation. Can we
remove it?

There is one more thing going on here. It appears that the system is oscillating but also that the
oscillations are increasing in magnitude. Eventually, this instability will compound enough to topple
the pendulum, despite having a proportional controller in place with a suitable gain. To see this, we
can increase the simulation time, this time to 40 seconds instead of 10.

𝑘𝑝

𝑘𝑝

𝜃 = 0

kp = 30.0 # CHANGE THIS TO A REASONABLE VALUE YOU FOUND WHEN TUNING ABOVE

cont = controller.PID( (kp, 0, 0) )

simu30 = sim.Simulation(dt, 40, force_func)

res_proportional = simu30.simulate(pend, cont)


100%|██████████| 4000/4000 [00:01<00:00, 2890.12it/s]


And we plot our longer-term simulation:

_, ax = plt.subplots()

ax.plot(res_proportional[('state', 't')])
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ax.set_ylabel("Angle (rads)")

ax.set_xlabel("Time (s)")

plt.show()

We see that eventually the oscillation grows large enough that the inverted pendulum falls over. The
controller pushes a little bit too hard right, and the pendulum overshoots a bit to the left; then, the
controller pushes left, and the pendulum overshoots a bit (more!) to the right, and the process
continues until the pendulum tips over.

This looks like a response associated with a complex pole with positive real part: a steady
oscillation bounded by an envelope of an increasing exponential -- that is, until the pendulum falls
over. This is due to the non-zero initial angle.

We need damping! A derivative term seeks to drive the rate of change of the error closer to zero over
time. Practically, this means that it can counteract the magnitude of the steady oscillation we see
(i.e., add damping to the system), and as a result, stabilize the system.

Below, we follow the same experimental process for tuning: slowly increase  and see the effects.
In real-life systems, where failure can have expensive or dangerous consequences, tuning is a very
delicate process, typically informed heavily by process knowledge. In this simulated world, we have
no such concerns.

𝑘𝑑

kp = 30.0 # CHANGE THIS TO A REASONABLE VALUE YOU FOUND WHEN TUNING ABOVE 

kd = 0.0

n = 16

increase_by = 0.25 # YOU CAN CHANGE THIS

conts = []
pends = [pend] * n

gains = []
for _ in range(n):
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    # increase the gain

    kd += increase_by

    # set ki, kd to 0

    pid = kp, 0.0, kd

    conts.append(controller.PID(pid))

    gains.append(kd)
# simulate each controller

all_results = simu10.simulate_multiple(pends, conts)


nrows, ncols = 4, 4

fig1, ax1 = plt.subplots(nrows=nrows, ncols=ncols, sharex=True, sharey=True, figsize=(
axn, ax_idxs = 0, {}

for i in range(nrows):

    for j in range(ncols):

        ax_idxs[axn] = (i, j)

        axn += 1

for g, (idx, res), (axi, axj) in zip(gains, all_results.groupby(level=0), ax_idxs.valu
    res.index = res.index.droplevel(0)

    ax1[axi, axj].plot(res[('state', 't')])

    ax1[axi, axj].set_title('gain=' + str(g))

# label plots

for i in range(nrows):

    ax1[i, 0].set_ylabel('theta (rad)')

for j in range(ncols):

    ax1[-1, j].set_xlabel('time (s)')


plt.show()
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100%|██████████| 1000/1000 [00:00<00:00, 1583.46it/s]

100%|██████████| 1000/1000 [00:00<00:00, 1572.35it/s]

100%|██████████| 1000/1000 [00:00<00:00, 1684.75it/s]

100%|██████████| 1000/1000 [00:00<00:00, 1586.66it/s]

100%|██████████| 1000/1000 [00:00<00:00, 1724.68it/s]

100%|██████████| 1000/1000 [00:00<00:00, 1555.73it/s]

100%|██████████| 1000/1000 [00:00<00:00, 1694.20it/s]

100%|██████████| 1000/1000 [00:00<00:00, 1611.31it/s]

100%|██████████| 1000/1000 [00:00<00:00, 1725.43it/s]

100%|██████████| 1000/1000 [00:00<00:00, 1527.42it/s]

100%|██████████| 1000/1000 [00:00<00:00, 1677.85it/s]

100%|██████████| 1000/1000 [00:00<00:00, 1558.19it/s]

100%|██████████| 1000/1000 [00:00<00:00, 1586.41it/s]

100%|██████████| 1000/1000 [00:00<00:00, 1691.98it/s]

100%|██████████| 1000/1000 [00:00<00:00, 1394.83it/s]

100%|██████████| 1000/1000 [00:00<00:00, 1213.46it/s]


Now, we look again at . It looks significantly better! The addition of a derivative term drives the
oscillations towards zero. To see the effect, we plot the two controllers next to one another, one with
the  term and one without.

𝜃

𝑘𝑑

res_p_10 = simu10.simulate(pend, controller.PID((30, 0.0, 0.0))) 

# Arguments in controller.PID are PID gains (kp, ki, kd)

# CHANGE THESE GAINS TO THOSE THAT YOU EXPERIMENTALLY FOUND TO WORK WELL.

# CHANGE ONLY kp ABOVE, BUT CHANGE BOTH kp AND kd BELOW.

res_pd_10 = simu10.simulate(pend, controller.PID((30, 0.0, 3.5)))


fig, ax = plt.subplots()

ax.plot(res_pd_10[('state', 't')], 'b-', label='With derivative')

ax.plot(res_p_10[('state', 't')], 'r--', label='Without Derivative')

ax.set_ylabel('Angle (rads)')

ax.set_xlabel('Time (s)')

ax.legend()

plt.show()
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100%|██████████| 1000/1000 [00:00<00:00, 2973.28it/s]

100%|██████████| 1000/1000 [00:00<00:00, 2901.93it/s]


The difference is stark!

Finally, we can look at a visualization of how this controller performed.

visu = viz.Visualizer(res_pd_10, pend, dt)
ani = visu.animate(blit=True)
HTML(ani.to_html5_video())

Since this simulation is relatively accurate, we expect that a pendulum with the same attributes
(length, mass, etc.), if controlled by a controller with the same gain (as expressed in Newtons of
force applied), would have similar stability characteristics -- so long as we could accurately measure
the state!

Tuning a controller in simulation is common practice before implementing a controller in a physical
system, where the consequences of bad tuning can be disasterous. If there were serious
consequences to knocking over our pendulum, we would want to use the gains we have discovered
here as a starting point.

Write down the final  and  values you chose that stabilize the system.
Given these gain values and the parameter values you chose, calculate the values of the poles
of your closed-loop system and plot them on the complex plane. Drawing the figure by hand is
fine.
Is this system stable, marginally stable, or unstable? Is the system underdamped, critically
damped, or overdamped?
Include the figure generated above that shows the comparison between responses with a P
controller versus a PD controller.

Include the following in your report:

𝑘𝑝 𝑘𝑑
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Would adding an integral term to the control law (i.e., make it a PID controller rather than a PD
controller) improve the performance of this closed-loop system? Describe why or why not.
Feel free to experiment with  values in the code.
Finally, change the initial condition for  in Part 1 above. What is the largest initial angle for
which this same PD controller you already tuned can stabilize the system? (You only need to
update the initial condition in the code that defines 'pend' in Part 1, rerun that code, and rerun
the code at the end of Part 2 that compares the P and PD controllers.)
Include the figure generated above comparing the P and PD controllers for this new initial
condition.

𝑘𝑖

𝜃


